当前位置: 首页 > news >正文

深度学习中的注意力模块的添加

在深度学习中,骨干网络通常指的是网络的主要结构或主干部分,它负责从原始输入中提取高级特征。骨干网络通常由卷积神经网络(CNN)或者类似的架构组成,用于对图像、文本或其他类型的数据进行特征提取和表示学习。

注意力模块则是一种用于处理序列数据的重要组件,例如在自然语言处理领域中常用的 Transformer 模型中就包含了注意力机制。注意力模块可以让模型更好地关注输入序列中的不同部分,并学习它们之间的相关性,从而提高模型的性能和泛化能力。

骨干网络和注意力模块通常是结合在一起来构建端到端的深度学习模型。这种结合可以通过多种方式实现:

  1. 注意力机制作为模块插入:在骨干网络的某个特定层或者多个层之间插入注意力模块。这样可以让模型在处理输入数据时更加灵活,可以根据任务的需要更加关注特定的信息或特征。

  2. 注意力机制与骨干网络并行:将注意力模块与骨干网络的不同部分并行处理输入数据,然后将它们的输出进行合并或者融合。这种方式可以提供更丰富的特征表征,同时保留了骨干网络和注意力模块各自的特点。

  3. 注意力机制作为整个模型的一部分:有些模型设计中,注意力机制被整合到模型的整个结构中,例如在 Transformer 模型中,注意力机制是模型的核心组件之一,与编码器、解码器等其他模块相互作用,共同完成任务。

总的来说,骨干网络和注意力模块的结合方式取决于具体的任务和模型设计需求。它们相互协作可以提高模型的表现,并且在不同的应用场景中可能会有不同的结合方式和调整方法。

举例:以 ResNet 骨干网络为例,并在其中的一个特定层插入自注意力机制。

import torch
import torch.nn as nn
import torch.nn.functional as F
from torchvision.models import resnet50class SelfAttention(nn.Module):def __init__(self, in_channels, out_channels):super(SelfAttention, self).__init__()self.query_conv = nn.Conv2d(in_channels, out_channels, kernel_size=1)self.key_conv = nn.Conv2d(in_channels, out_channels, kernel_size=1)self.value_conv = nn.Conv2d(in_channels, out_channels, kernel_size=1)self.gamma = nn.Parameter(torch.zeros(1))def forward(self, x):batch_size, channels, height, width = x.size()proj_query = self.query_conv(x).view(batch_size, -1, width * height).permute(0, 2, 1)proj_key = self.key_conv(x).view(batch_size, -1, width * height)energy = torch.bmm(proj_query, proj_key)attention = F.softmax(energy, dim=-1)proj_value = self.value_conv(x).view(batch_size, -1, width * height)out = torch.bmm(proj_value, attention.permute(0, 2, 1))out = out.view(batch_size, channels, height, width)out = self.gamma * out + xreturn outclass ResNetWithAttention(nn.Module):def __init__(self, num_classes):super(ResNetWithAttention, self).__init__()self.resnet = resnet50(pretrained=True)# Insert attention module after the second convolutional layerself.resnet.layer1.add_module("self_attention", SelfAttention(256, 256))self.fc = nn.Linear(2048, num_classes)def forward(self, x):x = self.resnet(x)x = F.avg_pool2d(x, x.size()[2:]).view(x.size(0), -1)x = self.fc(x)return x# Example usage:
model = ResNetWithAttention(num_classes=1000)
input_tensor = torch.randn(1, 3, 224, 224)  # Example input tensor
output = model(input_tensor)
print(output.shape)  # Should print: torch.Size([1, 1000])

在这个示例中,我们定义了一个自注意力模块 SelfAttention,并将其插入到了 ResNet 的第一个残差块 layer1 中的第二个卷积层之后。然后我们定义了一个新的模型 ResNetWithAttention,其中包含了 ResNet 的主干部分和我们插入的注意力模块。最后,我们在模型的最后添加了一个全连接层用于分类。

这个示例展示了如何在 PyTorch 中实现将注意力模块插入到现有骨干网络中的过程。通过这种方式,我们可以灵活地设计深度学习模型,以更好地适应不同的任务和数据特点。

举例:在 PyTorch 中实现将注意力机制与骨干网络并行处理输入数据,我们可以在骨干网络的输出上应用注意力机制,然后将其与骨干网络的输出进行合并或融合。下面是一个示例,我们将在 ResNet50 骨干网络的输出上应用自注意力机制,并将其与原始输出进行融合。

import torch
import torch.nn as nn
import torch.nn.functional as F
from torchvision.models import resnet50class SelfAttention(nn.Module):def __init__(self, in_channels, out_channels):super(SelfAttention, self).__init__()self.query_conv = nn.Conv2d(in_channels, out_channels, kernel_size=1)self.key_conv = nn.Conv2d(in_channels, out_channels, kernel_size=1)self.value_conv = nn.Conv2d(in_channels, out_channels, kernel_size=1)self.gamma = nn.Parameter(torch.zeros(1))def forward(self, x):batch_size, channels, height, width = x.size()proj_query = self.query_conv(x).view(batch_size, -1, width * height).permute(0, 2, 1)proj_key = self.key_conv(x).view(batch_size, -1, width * height)energy = torch.bmm(proj_query, proj_key)attention = F.softmax(energy, dim=-1)proj_value = self.value_conv(x).view(batch_size, -1, width * height)out = torch.bmm(proj_value, attention.permute(0, 2, 1))out = out.view(batch_size, channels, height, width)out = self.gamma * out + xreturn outclass ResNetWithAttentionParallel(nn.Module):def __init__(self, num_classes):super(ResNetWithAttentionParallel, self).__init__()self.resnet = resnet50(pretrained=True)self.attention = SelfAttention(2048, 2048)self.fc = nn.Linear(2048 * 2, num_classes)  # Concatenating original and attention-enhanced featuresdef forward(self, x):features = self.resnet(x)attention_out = self.attention(features)combined_features = torch.cat((features, attention_out), dim=1)  # Concatenate original and attention-enhanced featuresoutput = self.fc(combined_features.view(features.size(0), -1))return output# Example usage:
model = ResNetWithAttentionParallel(num_classes=1000)
input_tensor = torch.randn(1, 3, 224, 224)  # Example input tensor
output = model(input_tensor)
print(output.shape)  # Should print: torch.Size([1, 1000])

在这个示例中,我们定义了一个自注意力模块 SelfAttention,并在 ResNet50 的输出上应用了这个注意力机制。然后,我们将注意力机制的输出与原始的骨干网络输出进行了融合,通过将它们连接在一起。最后,我们在融合后的特征上添加了一个全连接层用于分类。

这个示例展示了如何在 PyTorch 中实现将注意力机制与骨干网络并行处理输入数据的方法。通过这种方式,我们可以利用注意力机制来增强骨干网络提取的特征,从而提高模型的性能和泛化能力。

举例:一个自注意力(self-attention)机制作为整个模型一部分的例子,这个例子基于 Transformer 模型的结构。在 Transformer 中,自注意力机制被整合到编码器和解码器中,用于处理序列数据。

下面是一个简化版本的 Transformer 编码器,其中包含自注意力层作为整个模型的一部分:

import torch
import torch.nn as nn
import torch.nn.functional as Fclass SelfAttention(nn.Module):def __init__(self, embed_size, heads):super(SelfAttention, self).__init__()self.embed_size = embed_sizeself.heads = headsself.head_dim = embed_size // headsassert (self.head_dim * heads == embed_size), "Embedding size needs to be divisible by heads"self.values = nn.Linear(self.head_dim, self.head_dim, bias=False)self.keys = nn.Linear(self.head_dim, self.head_dim, bias=False)self.queries = nn.Linear(self.head_dim, self.head_dim, bias=False)self.fc_out = nn.Linear(heads * self.head_dim, embed_size)def forward(self, values, keys, query, mask):N = query.shape[0]value_len, key_len, query_len = values.shape[1], keys.shape[1], query.shape[1]# Split the embedding into self.heads different piecesvalues = values.reshape(N, value_len, self.heads, self.head_dim)keys = keys.reshape(N, key_len, self.heads, self.head_dim)queries = query.reshape(N, query_len, self.heads, self.head_dim)values = self.values(values)keys = self.keys(keys)queries = self.queries(queries)# Scaled dot-product attentionenergy = torch.einsum("nqhd,nkhd->nhqk", [queries, keys])if mask is not None:energy = energy.masked_fill(mask == 0, float("-1e20"))attention = torch.softmax(energy / (self.embed_size ** (1 / 2)), dim=3)out = torch.einsum("nhql,nlhd->nqhd", [attention, values]).reshape(N, query_len, self.heads * self.head_dim)out = self.fc_out(out)return outclass TransformerEncoderLayer(nn.Module):def __init__(self, embed_size, heads, dropout, forward_expansion):super(TransformerEncoderLayer, self).__init__()self.attention = SelfAttention(embed_size, heads)self.norm1 = nn.LayerNorm(embed_size)self.norm2 = nn.LayerNorm(embed_size)self.feed_forward = nn.Sequential(nn.Linear(embed_size, forward_expansion * embed_size),nn.ReLU(),nn.Linear(forward_expansion * embed_size, embed_size),)self.dropout = nn.Dropout(dropout)def forward(self, value, key, query, mask):attention = self.attention(value, key, query, mask)# Add skip connection, run through normalization and finally dropoutx = self.dropout(self.norm1(attention + query))forward = self.feed_forward(x)out = self.dropout(self.norm2(forward + x))return outclass TransformerEncoder(nn.Module):def __init__(self,src_vocab_size,embed_size,num_layers,heads,device,forward_expansion,dropout,max_length,):super(TransformerEncoder, self).__init__()self.embed_size = embed_sizeself.device = deviceself.word_embedding = nn.Embedding(src_vocab_size, embed_size)self.position_embedding = nn.Embedding(max_length, embed_size)self.layers = nn.ModuleList([TransformerEncoderLayer(embed_size,heads,dropout=dropout,forward_expansion=forward_expansion,)for _ in range(num_layers)])self.dropout = nn.Dropout(dropout)def forward(self, x, mask):N, seq_length = x.shapepositions = torch.arange(0, seq_length).expand(N, seq_length).to(self.device)out = self.dropout(self.word_embedding(x) + self.position_embedding(positions))for layer in self.layers:out = layer(out, out, out, mask)return out# Example usage:
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
src_vocab_size = 1000  # Example vocabulary size
max_length = 100  # Example maximum sequence length
embed_size = 256
heads = 8
num_layers = 6
forward_expansion = 4
dropout = 0.2encoder = TransformerEncoder(src_vocab_size,embed_size,num_layers,heads,device,forward_expansion,dropout,max_length,
)# Example input tensor
input_tensor = torch.randint(0, src_vocab_size, (32, 10))  # Batch size: 32, Sequence length: 10
mask = torch.ones(32, 10)  # Example maskoutput = encoder(input_tensor, mask)
print(output.shape)  # Should print: torch.Size([32, 10, 256])

在这个例子中,我们定义了一个简化版本的 Transformer 编码器,其中包含自注意力层作为整个模型的一部分。自注意力层用于处理输入序列,并学习序列中不同位置之间的关系。整个模型接受输入序列并输出相应的表示。

相关文章:

深度学习中的注意力模块的添加

在深度学习中,骨干网络通常指的是网络的主要结构或主干部分,它负责从原始输入中提取高级特征。骨干网络通常由卷积神经网络(CNN)或者类似的架构组成,用于对图像、文本或其他类型的数据进行特征提取和表示学习。 注意力…...

Docker 部署开源远程桌面工具 RustDesk

RustDesk是一款远程控制,远程协助的开源软件。完美替代TeamViewer ,ToDesk,向日葵等平台。关键支持自建服务器,更安全私密远程控制电脑!官网地址:https://rustdesk.com/ 环境准备 1、阿里云服务器一 台&a…...

intellij idea 使用git ,快速合并冲突

可以选择左边的远程分支上的代码,也可以选择右边的代码,而中间是合并的结果。 一个快速合并冲突的小技巧: 如果冲突比较多,想要快速合并冲突。也可以直接点击上图中 Apply non-conflicting changes 旁边的 All 。 这样 Idea 就会…...

AcWing26. 二进制中1的个数。三种解法Java

输入一个 3232 位整数,输出该数二进制表示中 11 的个数。 注意: 负数在计算机中用其绝对值的补码来表示。 数据范围 −100≤ 输入整数 ≤100 样例1 输入:9 输出:2 解释:9的二进制表示是1001,一共有2个…...

【ADB】常见命令汇总(持续更新)

▒ 目录 ▒ 🛫 导读开发环境 1️⃣ 设备连接和识别2️⃣ 应用程序管理3️⃣ 文件传输和管理4️⃣ 设备信息和日志5️⃣ 设备操作和控制6️⃣ 截图相关🛬 文章小结📖 参考资料 🛫 导读 Android调试桥(ADB)是…...

【递归与递推】数的计算|数的划分|耐摔指数

1.数的计算 - 蓝桥云课 (lanqiao.cn) 思路: 1.dfs的变量>每一次递归什么在变? (1)当前数的大小一直在变:sum (2)最高位的数:k 2.递归出口:最高位数字为1 3.注意&#…...

企业案例:金蝶云星空集成钉钉,帆软BI

正文:在数字化转型的大潮中,众多企业开始探索并实践高效的数据流转与集成,以提升内部管理效率和决策质量。本文将以某企业为例,详细介绍如何通过将钉钉审批流程的数据实时同步至金蝶云星空,并进一步在帆软报表平台上实…...

简单设计模式讲解

设计模式是在软件开发中经常使用的最佳实践,用于解决在软件设计中经常遇到的问题。它们提供了可重用的设计,使得代码更加灵活、可维护和可扩展。下面我将为你讲解几种常见的设计模式,并提供相应的C#代码示例。 1. 单例模式(Single…...

基于springboot的社区医疗服务系统

文章目录 项目介绍主要功能截图:部分代码展示设计总结项目获取方式 🍅 作者主页:超级无敌暴龙战士塔塔开 🍅 简介:Java领域优质创作者🏆、 简历模板、学习资料、面试题库【关注我,都给你】 &…...

影院座位选择简易实现(uniapp)

界面展示 主要使用到uniap中的movable-area&#xff0c;和movable-view组件实现。 代码逻辑分析 1、使用movable-area和movea-view组件&#xff0c;用于座位展示 <div class"ui-seat__box"><movable-area class"ui-movableArea"><movab…...

调用飞书获取用户Id接口成功,但是没有返回相应数据

原因&#xff1a; 该自建应用没有开放相应的数据权限。 解决办法&#xff1a; 在此处配置即可。...

STM32 GPIO输入检测——按键

前言 在嵌入式系统开发中&#xff0c;对GPIO输入进行检测是一项常见且关键的任务。STM32微控制器作为一款功能强大的处理器&#xff0c;具有丰富的GPIO功能&#xff0c;可以轻松实现对外部信号的检测和处理。在本文中&#xff0c;我们将深入探讨如何在STM32微控制器上进行GPIO…...

Rustdesk二次编译,新集成AI功能开源Gpt小程序为远程协助助力,全网首发

环境&#xff1a; Rustdesk1.1.9 sciter版 问题描述&#xff1a; Rustdesk二次编译&#xff0c;新集成AI功能开源Gpt小程序为远程协助助力,全网首发 解决方案&#xff1a; Rustdesk二次编译&#xff0c;新集成开源AI功能Gpt小程序&#xff0c;为远程协助助力&#xff0c…...

面试(03)————多线程和线程池

一、多线程 1、什么是线程?线程和进程的区别? 2、创建线程有几种方式 &#xff1f; 3、Runnable 和 Callable 的区别&#xff1f; 4、如何启动一个新线程、调用 start 和 run 方法的区别&#xff1f; 5、线程有哪几种状态以及各种状态之间的转换&#xff1f; 6、线程…...

纯CSS实现未读消息显示99+

在大佬那看到这个小技巧&#xff0c;我觉得这个功能点还挺常用&#xff0c;所以给大家分享下具体的实现。当未读消息数小于100的时候显示准确数值&#xff0c;大于99的时候显示99。 1. 实现效果 2. 组件封装 <template><span class"col"><sup :styl…...

【C++】C++ primer plus 第十二章--类和动态内存分配

动态内存和类 关于静态数据成员 类之作声明&#xff0c;不分配内存&#xff0c;因此静态成员变量在类中不能进行初始化&#xff0c;需要在类外进行。特殊情况&#xff1a; 存在可以在类中声明静态成员并初始化的情况&#xff0c;成员类型为const整型或者const枚举类型。 特殊…...

分类预测 | Matlab实现GWO-LSSVM灰狼算法优化最小二乘支持向量机数据分类预测

分类预测 | Matlab实现GWO-LSSVM灰狼算法优化最小二乘支持向量机数据分类预测 目录 分类预测 | Matlab实现GWO-LSSVM灰狼算法优化最小二乘支持向量机数据分类预测分类效果基本介绍程序设计参考资料 分类效果 基本介绍 1.Matlab实现GWO-LSSVM灰狼算法优化最小二乘支持向量机数据…...

使用PHP进行极验验证码动态参数提取与逆向分析

在网络安全领域&#xff0c;逆向工程和验证码破解是常见的技术挑战之一。极验验证码作为一种常见的人机验证工具&#xff0c;其动态参数的提取和逆向分析对于验证码的破解至关重要。本文将介绍如何使用PHP语言进行极验验证码动态参数的提取与逆向分析。 1. 准备工作 在开始之前…...

43.1k star, 免费开源的 markdown 编辑器 MarkText

43.1k star, 免费开源的 markdown 编辑器 MarkText 分类 开源分享 项目名: MarkText -- 简单而优雅的开源 Markdown 编辑器 Github 开源地址&#xff1a; https://github.com/marktext/marktext 官网地址&#xff1a; MarkText 支持平台&#xff1a; Linux, macOS 以及 Win…...

ArcGIS Pro怎么进行挖填方计算

在工程实施之前&#xff0c;我们需要充分利用地形&#xff0c;结合实际因素&#xff0c;通过挖填方计算项目的标高&#xff0c;以达到合理控制成本的目的&#xff0c;这里为大家介绍一下ArcGIS Pro中挖填方计算的方法&#xff0c;希望能对你有所帮助。 数据来源 教程所使用的…...

页面渲染流程与性能优化

页面渲染流程与性能优化详解&#xff08;完整版&#xff09; 一、现代浏览器渲染流程&#xff08;详细说明&#xff09; 1. 构建DOM树 浏览器接收到HTML文档后&#xff0c;会逐步解析并构建DOM&#xff08;Document Object Model&#xff09;树。具体过程如下&#xff1a; (…...

苍穹外卖--缓存菜品

1.问题说明 用户端小程序展示的菜品数据都是通过查询数据库获得&#xff0c;如果用户端访问量比较大&#xff0c;数据库访问压力随之增大 2.实现思路 通过Redis来缓存菜品数据&#xff0c;减少数据库查询操作。 缓存逻辑分析&#xff1a; ①每个分类下的菜品保持一份缓存数据…...

第一篇:Agent2Agent (A2A) 协议——协作式人工智能的黎明

AI 领域的快速发展正在催生一个新时代&#xff0c;智能代理&#xff08;agents&#xff09;不再是孤立的个体&#xff0c;而是能够像一个数字团队一样协作。然而&#xff0c;当前 AI 生态系统的碎片化阻碍了这一愿景的实现&#xff0c;导致了“AI 巴别塔问题”——不同代理之间…...

【git】把本地更改提交远程新分支feature_g

创建并切换新分支 git checkout -b feature_g 添加并提交更改 git add . git commit -m “实现图片上传功能” 推送到远程 git push -u origin feature_g...

WordPress插件:AI多语言写作与智能配图、免费AI模型、SEO文章生成

厌倦手动写WordPress文章&#xff1f;AI自动生成&#xff0c;效率提升10倍&#xff01; 支持多语言、自动配图、定时发布&#xff0c;让内容创作更轻松&#xff01; AI内容生成 → 不想每天写文章&#xff1f;AI一键生成高质量内容&#xff01;多语言支持 → 跨境电商必备&am…...

OpenPrompt 和直接对提示词的嵌入向量进行训练有什么区别

OpenPrompt 和直接对提示词的嵌入向量进行训练有什么区别 直接训练提示词嵌入向量的核心区别 您提到的代码: prompt_embedding = initial_embedding.clone().requires_grad_(True) optimizer = torch.optim.Adam([prompt_embedding...

Java求职者面试指南:Spring、Spring Boot、MyBatis框架与计算机基础问题解析

Java求职者面试指南&#xff1a;Spring、Spring Boot、MyBatis框架与计算机基础问题解析 一、第一轮提问&#xff08;基础概念问题&#xff09; 1. 请解释Spring框架的核心容器是什么&#xff1f;它在Spring中起到什么作用&#xff1f; Spring框架的核心容器是IoC容器&#…...

20个超级好用的 CSS 动画库

分享 20 个最佳 CSS 动画库。 它们中的大多数将生成纯 CSS 代码&#xff0c;而不需要任何外部库。 1.Animate.css 一个开箱即用型的跨浏览器动画库&#xff0c;可供你在项目中使用。 2.Magic Animations CSS3 一组简单的动画&#xff0c;可以包含在你的网页或应用项目中。 3.An…...

GitHub 趋势日报 (2025年06月06日)

&#x1f4ca; 由 TrendForge 系统生成 | &#x1f310; https://trendforge.devlive.org/ &#x1f310; 本日报中的项目描述已自动翻译为中文 &#x1f4c8; 今日获星趋势图 今日获星趋势图 590 cognee 551 onlook 399 project-based-learning 348 build-your-own-x 320 ne…...

day36-多路IO复用

一、基本概念 &#xff08;服务器多客户端模型&#xff09; 定义&#xff1a;单线程或单进程同时监测若干个文件描述符是否可以执行IO操作的能力 作用&#xff1a;应用程序通常需要处理来自多条事件流中的事件&#xff0c;比如我现在用的电脑&#xff0c;需要同时处理键盘鼠标…...