当前位置: 首页 > news >正文

2024年MathorCup数模竞赛B题问题一二三+部分代码分享

inputFolderPath = 'E:\oracle\images\';

outputFolderPath = 'E:\oracle\process\';

% 获取文件夹中所有图片的文件列表

imageFiles = dir(fullfile(inputFolderPath, '*.jpg'));

% 设置colorbar范围阈值

threshold = 120;

% 遍历每个图片文件

for i = 1:length(imageFiles)

% 读取图片

currentImage = imread(fullfile(inputFolderPath, imageFiles(i).name));

% 创建一个二值化图像,大于阈值的部分为1,其余部分为0

binaryImage = currentImage(:,:,1) > threshold;

% 将大于阈值的部分设为黑色,其余部分设为白色

resultImage = uint8(cat(3, ~binaryImage * 255, ~binaryImage * 255, ~binaryImage * 255));

% 保存新生成的图像到新的文件夹

[~, name, ext] = fileparts(imageFiles(i).name);

resultFileName = fullfile(outputFolderPath, [regexprep(name, '_filtered', '') ext]);

imwrite(resultImage, resultFileName);

end

 

1.降噪与细化处理:应用中值滤波和阈值法(大津算法Otsu's method)来减少噪声(去除了甲骨文内部一些白色噪点,同时将背景中大部分噪点去除,并将甲骨上边缘模糊的地方进行细化操作处理,注意保证甲骨文的清晰程度)

中值滤波降噪: 对甲骨文图像进行中值滤波操作,以减少图像中的噪声。

细化处理: 可以采用形态学操作中的细化算法对甲骨文边缘进行进一步细化,以保证甲骨文的清晰度。

 

import os
import cv2def denoise_image(image):# 中值滤波denoised_image = cv2.medianBlur(image, 5)  # 中值滤波# 高斯滤波# denoised_image = cv2.GaussianBlur(image, (7, 7), 0)  # 高斯滤波return denoised_image# 输入和输出目录
input_folder = 'E:/oracle/process1/'
output_folder = 'E:/oracle/process2/'# 确保输出目录存在
if not os.path.exists(output_folder):os.makedirs(output_folder)# 处理多张图片
for filename in os.listdir(input_folder):# 读取图像image_path = os.path.join(input_folder, filename)image = cv2.imread(image_path)# 降噪denoised_image = denoise_image(image)# 保存结果output_path = os.path.join(output_folder, filename)cv2.imwrite(output_path, denoised_image)

 

相关文章:

2024年MathorCup数模竞赛B题问题一二三+部分代码分享

inputFolderPath E:\oracle\images\; outputFolderPath E:\oracle\process\; % 获取文件夹中所有图片的文件列表 imageFiles dir(fullfile(inputFolderPath, *.jpg)); % 设置colorbar范围阈值 threshold 120; % 遍历每个图片文件 for i 1:length(imageFiles) % 读…...

Ubuntu日常配置

目录 修改网络配置 xshell连不上怎么办 解析域名失败 永久修改DNS方法 临时修改DNS方法 修改网络配置 1、先ifconfig确认本机IP地址(刚装的机子没有ifconfig,先apt install net-tools) 2、22.04版本的ubuntu网络配置在netplan目录下&…...

GMSSL-通信

死磕GMSSL通信-C/C++系列(一) 最近再做国密通信的项目开发,以为国密也就简单的集成一个库就可以完事了,没想到能有这么多坑。遂写下文章,避免重复踩坑。以下国密通信的坑有以下场景 1、使用GMSSL guanzhi/GmSSL进行通信 2、使用加密套件SM2-WITH-SMS4-SM3 使用心得 ​…...

linux 磁盘分区Inode使用率达到100%,导致网站无法创建文件报错 failed:No space leftondevice(

linux 磁盘分区Inode使用率达到100%,导致网站无法创建文件报错 failed:No space left on device 由于这问题直接导致了,网站无法正常运行! 提交工单求助阿里后,得到了答案! 工程师先让我执行 df -h 和 df -i 通过分析…...

探索Python库的奇妙世界

探索Python库的奇妙世界 Python作为一种流行的编程语言,因其简洁的语法、强大的库支持和广泛的应用场景而备受开发者青睐。在这篇文章中,我们将深入探讨Python库的世界,了解它们如何帮助我们更高效地编写代码,并展示一些最有用的…...

SQL Server 存储函数(funGetId):唯一ID

系统测试时批量生成模拟数据,通过存储函数生成唯一ID。 根据当前时间生成唯一ID(17位) --自定义函数:根据当前时间组合成一个唯一ID字符串:yearmonthdayhourminutesecondmillisecond drop function funGetId;go--自定义函数&…...

当你的项目体积比较大?你如何做性能优化

在前端开发中,项目体积优化是一个重要的环节,它直接影响到网页的加载速度和用户体验。随着前端项目越来越复杂,引入的依赖也越来越多,如何有效地减少最终打包文件的大小,成为了前端工程师需要面对的挑战。以下是一些常…...

第6章:6.3.2 一张表总结正则表达式的语法 (MATLAB入门课程)

讲解视频:可以在bilibili搜索《MATLAB教程新手入门篇——数学建模清风主讲》。​ MATLAB教程新手入门篇(数学建模清风主讲,适合零基础同学观看)_哔哩哔哩_bilibili 本节我们用一张表来回顾和总结MATLAB正则表达式的基本语法。这个…...

VBA 实现outlook 当邮件设置category: red 即触发自动创建jira issue

1. 打开: Outlook VBA(Visual Basic for Applications) 方法一: 在邮件直接搜索:Visual Basic editor 方法二: File -> Options -> Customize Ribbon-> 打钩 如下图: 2.设置运行VBA 脚本: File -> Options -> Trust center -> Trus…...

办公软件巨头CCED、WPS迎来新挑战,新款办公软件已形成普及之势

办公软件巨头CCED、WPS的成长经历 CCED与WPS,这两者均是中国办公软件行业的佼佼者,为人们所熟知。 然而,它们的成功并非一蹴而就,而是经过了长时间的积累与沉淀。 CCED,这款中国大陆早期的文本编辑器,在上…...

架构设计-订单系统之订单系统的架构进化

1、单数据库架构 产品初期,技术团队的核心目标是:“快速实现产品需求,尽早对外提供服务”。 彼时的专车服务都连同一个 SQLServer 数据库,服务层已经按照业务领域做了一定程度的拆分。 这种架构非常简单,团队可以分开…...

性能升级,INDEMIND机器人AI Kit助力产业再蜕变

随着机器人进入到越来越多的生产生活场景中,作业任务和环境变得更加复杂,机器人需要更精准、更稳定、更智能、更灵敏的自主导航能力。 自主导航技术作为机器人技术的核心,虽然经过了多年发展,取得了长足进步,但在实践…...

2024年妈妈杯数学建模C题思路分析-物流网络分拣中心货量预测及人员排班

# 1 赛题 C 题 物流网络分拣中心货量预测及人员排班 电商物流网络在订单履约中由多个环节组成,图 ’ 是一个简化的物流 网络示意图。其中,分拣中心作为网络的中间环节,需要将包裹按照不同 流向进行分拣并发往下一个场地,最终使包裹…...

prometheus\skywalking\splunk功能的区别

Prometheus、SkyWalking和Splunk这三个工具在功能上各有特色,以下是它们各自的主要功能特点: Prometheus是一个开源的系统监控和警报工具。它的主要功能包括: 实时监控与警报:Prometheus可以实时监控各种指标,并根据…...

Harmony鸿蒙南向驱动开发-SPI接口使用

功能简介 SPI指串行外设接口(Serial Peripheral Interface),是一种高速的,全双工,同步的通信总线。SPI是由Motorola公司开发,用于在主设备和从设备之间进行通信。 SPI接口定义了操作SPI设备的通用方法集合…...

芒果YOLOv7改进96:检测头篇DynamicHead动态检测头:即插即用|DynamicHead检测头,尺度感知、空间感知、任务感知

该专栏完整目录链接: 芒果YOLOv7深度改进教程 该创新点:在原始的Dynamic Head的基础上,对核心部位进行了二次的改进,在 原论文 《尺度感知、空间感知、任务感知》 的基础上,在 通道感知 的层级上进行了增强,关注每个像素点的比重。 在自己的数据集上改进,有效涨点就可以…...

独一无二:探索单例模式在现代编程中的奥秘与实践

设计模式在软件开发中扮演着至关重要的角色,它们是解决特定问题的经典方法。在众多设计模式中,单例模式因其独特的应用场景和简洁的实现而广受欢迎。本文将从多个角度详细介绍单例模式,帮助你理解它的定义、实现、应用以及潜在的限制。 1. 什…...

centos7 安装 rabbitmq3.8.5

1.首先安装 erlang 环境: curl -s https://packagecloud.io/install/repositories/rabbitmq/erlang/script.rpm.sh | sudo bash sudo yum install erlang-21.3.8.14-1.el7.x86_64 yum install socat -y 2.安装 rabbitmq https://github.com/rabbitmq/rabbitmq-s…...

利用SOCKS5代理和代理IP提升网络安全与匿名性

一、引言 随着网络技术的迅猛发展,数据安全和隐私保护已成为业界关注的热点。企业和个人用户越来越依赖于各种网络技术来保护敏感信息免受未授权访问。本文将探讨SOCKS5代理、代理IP以及HTTP协议在提升网络安全和匿名性方面的作用和实践应用。 二、基础技术概述 2.…...

C++list模拟实现

Clist模拟实现 list接口总结结点类的模拟实现迭代器的模拟实现迭代器模板参数迭代器类中的构造函数迭代器类中的运算符重载operator和operator - -operator! 和operatoroperator*operator->总览 list 类构造函数拷贝构造函数赋值运算符重载operatorclear&#xf…...

设计模式(22):解释器模式

解释器 是一种不常用的设计模式用于描述如何构成一个简单的语言解释器,主要用于使用面向对象语言开发的解释器和解释器设计当我们需要开发一种新的语言时,可以考虑使用解释器模式尽量不要使用解释器模式,后期维护会有很大麻烦。在项目中&…...

kubernetes docker版本安装测试

文章目录 测试环境kubernetes安装环境配置安装程序下载镜像初始化reset环境init构建kubernetes配置授权信息配置网络插件查看状态 简单实例测试 测试环境 [rootlocalhost ~]# cat /etc/redhat-release CentOS Linux release 7.9.2009 (Core)kubernetes安装 参考kuberneter文档…...

策略模式:灵活调整算法的设计精髓

在软件开发中,策略模式是一种行为型设计模式,它允许在运行时选择算法的行为。通过定义一系列算法,并将每个算法封装起来,策略模式使得算法可以互换使用,这使得算法可以独立于使用它们的客户。本文将详细介绍策略模式的…...

[INS-30014]无法检查指定的位置是否位于 CFS 上

文章目录 一、具体错误二、通用解决方案1、可能的问题原因2、解决方案3、常见原因之hosts文件配置问题hosts配置方法hosts文件不可编辑解决办法 一、具体错误 在安装ORACLE19c的时候,出现无法检查指定的位置是否位于CFS上 二、通用解决方案 1、可能的问题原因 遇…...

机器学习和深度学习 -- 李宏毅(笔记与个人理解)Day 13

Day13 Error surface is rugged…… Tips for training :Adaptive Learning Rate critical point is not the difficult Root mean Square --used in Adagrad 这里为啥是前面的g的和而不是直接只除以当前呢? 这种方法的目的是防止学习率在训练过程中快速衰减。如果只用当前的…...

[Python图像识别] 五十二.水书图像识别 (2)基于机器学习的濒危水书古文字识别研究

该系列文章是讲解Python OpenCV图像处理知识,前期主要讲解图像入门、OpenCV基础用法,中期讲解图像处理的各种算法,包括图像锐化算子、图像增强技术、图像分割等,后期结合深度学习研究图像识别、图像分类应用。目前我进入第二阶段Python图像识别,该部分主要以目标检测、图像…...

Jmeter针对多种响应断言的判断

有时候response返回的结果并非一种,有多种,需要对这几种进行判断的时候需要使用Bean Shell。 (1)首先获取响应数据 String response prev.getResponseDataAsString(); ResponseCode 响应状态码 responseHeaders 响应头信息 res…...

Harmony鸿蒙南向驱动开发-Regulator接口使用

功能简介 Regulator模块用于控制系统中某些设备的电压/电流供应。在嵌入式系统(尤其是手机)中,控制耗电量很重要,直接影响到电池的续航时间。所以,如果系统中某一个模块暂时不需要使用,就可以通过Regulato…...

【opencv】示例-grabcut.cpp 使用OpenCV库的GrabCut算法进行图像分割

left mouse button - set rectangle SHIFTleft mouse button - set GC_FGD pixels CTRLleft mouse button - set GC_BGD pixels 这段代码是一个使用OpenCV库的GrabCut算法进行图像分割的C程序。它允许用户通过交互式方式选择图像中的一个区域,并利用GrabCut算法尝试…...

GEE数据集——巴基斯坦国家级土壤侵蚀数据集(2005 年和 2015 年)

简介 巴基斯坦国家级土壤侵蚀数据集(2005 年和 2015 年) 该数据集采用修订的通用土壤流失方程 (RUSLE),并考虑了六个关键影响因素:降雨侵蚀率 (R)、土壤可侵蚀性 (K)、坡长 (L)、坡陡 (S)、覆盖管理 (C) 和保护措施 (P)&#xff…...

osx wordpress/优化关键词技巧

2019独角兽企业重金招聘Python工程师标准>>> 一年一度的秋招已经打响了发令枪,从去年的薪酬排行来看,算法工程师和数据分析等工作排在前列,很多相关专业的学生一直在自学一些网络上的公开课并阅读一些专业书籍,比如“西…...

80 wordpress/营销推广渠道有哪些

Lora 数据发送与接收 预计到2025年,我们将有250亿台设备连接到互联网。 相当于今天的地球人口多三倍。 随着物联网和工业4.0的概念,互联车辆和智能城市的迅速普及,这种情况最有可能发生。 我们已经有少数无线协议,如BLE、Wi-Fi、蜂窝等,但是这些技术对于IoT传感器节点而言…...

wordpress 主题分享/app推广

一、硬件材料 1*Arduino UNO开发板 1*GSP30 1*0.96寸OLED液晶显示屏 二、硬件接线图 CSDN 赤鱼科技...

佛山网站建设收费标准/小程序引流推广平台

北漂未及三月,最最心累的不仅仅从未接触过的工作(怎么就从C开发转到大数据开发了),还有让人一筹莫展、咬牙切齿的租房问题。 一筹莫展 我算是运气比较差的那一部分人了,对象在银行,本来在北京可以直接租个一…...

美国主机网站建设/百度95099如何转人工

这里使用的是淘宝的接口 public class AddressUtil{ /** * * param content * 请求的参数 格式为:namexxx&pwdxxx * param encodingString * 服务器端请求编码。如GBK,UTF-8等 * return * throws UnsupportedEncodingException */ public static String getAddr…...

南通门户网站建设/超级外链工具有用吗

NOTE: 1.APIs往往要求访问原始资源(raw resources),所以每一个RAII class应该提供一个“取得其所管理之资源”的办法。 2.对原始资源的访问可能经由显示转换或隐式转换。一般而言显示转换比较安全,但隐式转换对客户比较方便。 转载于:https:/…...