【stata】求滚动波动情况
0.计算对象
计算 t t t、 t + 1 t+1 t+1、 t + 2 t+2 t+2 这三起滚动波动情况
V o l i , t = l n ( ∑ n = t n = t + 2 ( g n − g ˉ ) 2 3 ) Vol_{i,t} = ln(\sqrt{\frac{\sum_{n=t}^{n=t+2}(g_{n}-\bar{g})^2}{3}}) Voli,t=ln(3∑n=tn=t+2(gn−gˉ)2)
e . g e.g e.g: 假设 2008-2010的value分别为【6.264004 】、 【11.11958】 、 【18.7657】
三年均值 g ˉ \bar{g} gˉ等于【12.049761】
此处数据与stata模拟数据一致,便于对比手动计算结果和代码计算结果是否一致,
进而证明代码的有效性。
. di (6.264004 + 11.11958 + 18.7657) / 3
12.049761
V o l i , 2008 = l n ( ∑ n = 2008 n = 2010 ( g n − g ˉ ) 2 3 ) Vol_{i,2008} = ln(\sqrt{\frac{\sum_{n=2008}^{n=2010}(g_{n}-\bar{g})^2}{3}}) Voli,2008=ln(3∑n=2008n=2010(gn−gˉ)2)
V o l i , 2008 = l n ( ( 6.26 − 12.05 ) 2 + ( 11.12 − 12.05 ) 2 + ( 18.77 − 12.05 ) 2 3 ) Vol_{i,2008} = ln(\sqrt{\frac{(6.26-12.05)^2 + (11.12-12.05)^2 + (18.77-12.05)^2 }{3}}) Voli,2008=ln(3(6.26−12.05)2+(11.12−12.05)2+(18.77−12.05)2)
V o l i , 2008 = l n ( 79.5474 3 ) Vol_{i,2008} = ln(\sqrt{\frac{79.5474 }{3}}) Voli,2008=ln(379.5474)
V o l i , 2008 = l n ( 26.5158 ) Vol_{i,2008} = ln(\sqrt{26.5158}) Voli,2008=ln(26.5158)
V o l i , 2008 = l n ( 5.1493495 ) Vol_{i,2008} = ln(5.1493495) Voli,2008=ln(5.1493495)
V o l i , 2008 = 1.63 Vol_{i,2008} = 1.63 Voli,2008=1.63
1.模拟数据
clear
set seed 123
set obs 10// ssc install egenmore,replace
egen id = repeat(),v(1/2)
sort id
egen year = repeat(),v(2008/2012)
gen value = uniform() * 20
replace year = year - 1 if id == 2list id year value
运行结果
Number of observations (_N) was 0, now 10.(5 real changes made)+----------------------+| id year value ||----------------------|1. | 1 2008 6.264004 |2. | 1 2009 11.11958 |3. | 1 2010 18.7657 |4. | 1 2011 14.72644 |5. | 1 2012 3.848151 ||----------------------|6. | 2 2007 3.902801 |7. | 2 2008 19.0192 |8. | 2 2009 5.808908 |9. | 2 2010 16.38165 |10. | 2 2011 9.764193 |+----------------------+
2.根据unit id 拆分成多个dta
egen count = group(id)
su count,d
global dim = r(max)forv i = 1/$dim{preservekeep if count == `i'drop countsave temp`i'.dta,replace restore
}
3.对于每一个unit滚动求和
先定义滚动3年
然后求这3年内的value的平均 g ˉ \bar{g} gˉ
再用逐年的数值减去均值,
而后求平方项 / 3
最后取对数
forv id = 1/$dim{
use temp`id'.dta,replace
su year ,dglobal row_year = 3 // 三年滚动求和global range_low = r(min)
global range_high = r(max) - $row_year + 1forv i = $range_low/$range_high{local j = `i' + $row_year - 1gen cond_bin = (year >= `i' & year <= `j')egen m_`i' = mean(value) if cond_bin == 1ereplace m_`i' = mean(m_`i')gen rolling_`i' = (value - m_`i')^2 if cond_bin == 1ereplace rolling_`i' = total(rolling_`i') if cond_bin == 1replace rolling_`i' = ln(sqrt(rolling_`i' / $row_year))drop cond_bin
}
keep id rolling*
forv i = $range_low/$range_high{ereplace rolling_`i' = mean(rolling_`i')
}
duplicates drop id ,force
reshape long rolling_,i(id) j(year)
save rolling_`id'.dta,replace
}
4.合并/清除数据
use rolling_1.dta,replace
forv id = 2/$dim{append using rolling_`id'.dta
}
forv i = 1/$dim{erase temp`i'.dtaerase rolling_`i'.dta
}
save rolling.dta,replace
5.运行结果
use rolling.dta,clear
list id year roll in 1/6
结果对比:可以看到,id=1时,year=2008时,代码计算结果也为1.63,与手动计算结果一致,证明了代码的有效性
+----------------------+| id year rolling_ ||----------------------|1. | 1 2008 1.638221 |2. | 1 2009 1.138851 |3. | 1 2010 1.840516 |4. | 2 2007 1.905365 |5. | 2 2008 1.741902 |6. | 2 2009 1.472856 |+----------------------+
相关文章:
【stata】求滚动波动情况
0.计算对象 计算 t t t、 t 1 t1 t1、 t 2 t2 t2 这三起滚动波动情况 V o l i , t l n ( ∑ n t n t 2 ( g n − g ˉ ) 2 3 ) Vol_{i,t} ln(\sqrt{\frac{\sum_{nt}^{nt2}(g_{n}-\bar{g})^2}{3}}) Voli,tln(3∑ntnt2(gn−gˉ)2 ) e . g e.g e.g: 假设 200…...
The C programming language (second edition,KR) exercise(CHAPTER 2)
E x c e r c i s e 2 − 1 Excercise\quad 2-1 Excercise2−1:输出结果如图1和图2所示,这道练习题需要文章1和文章2的知识。 #include <stdio.h> #include <limits.h>float getFloat(char sign, unsigned char exp, unsigned mantissa); do…...
rust实现循环链表
作为一个计算机技术专家,针对你的问题,我将首先解释如何使用Rust语言实现循环链表,并提供相应的代码示例。然后,我将解释一个可能的报错问题及其解决方法。 循环链表的实现 在Rust中实现循环链表,首先需要定义链表节…...
2. Spring的创建和Bean的存取
经过前面的学习我们已经大体明白了 IOC 思想以及它的实现方式 DI ,本节要讲的是如何Spring框架实现实现DI。 本节目标: Spring(Core) 项目创建将对象存储到 Spring 中将对象(bean)从 Spring 中取出 1. 创建 Spring 项目 与开篇演示的 Spring Boot 项目不…...
策略模式【行为模式C++】
1.概述 策略模式是一种行为设计模式, 它能让你定义一系列算法, 并将每种算法分别放入独立的类中, 以使算法的对象能够相互替换。 策略模式通常应用于需要多种算法进行操作的场景,如排序、搜索、数据压缩等。在这些情况下&#x…...
php中session相关知识(目前了解部分)
#记录学习知识 一.ini_set() 在PHP中,ini_set() 函数用于在脚本运行时设置指定的配置选项的值。这些配置选项可以是PHP的核心设置,例如文件上传的最大大小、脚本的最大执行时间、错误报告级别等。使用 ini_set() 可以临时改变PHP.ini文件中的设置&am…...
从零实现诗词GPT大模型:GPT是怎么生成内容的?
专栏规划: https://qibin.blog.csdn.net/article/details/137728228 再开始编写GPT之前,我们得对GPT是怎么生成内容的有一个大致的了解。目前的神经网络我们大多都可以看成是一个黑盒,即我们把数据输送给网络后,网络给我我们输出,我们可以不用关心这个黑盒里到底是怎么实现…...
8路HDMI+8路AV高清视频流媒体编码器JR-3218HD
产品简介: JR-3218HD高清音视频编码产品支持8路高清HDMI音视频采集功能,8路AV视频采集功能,8路3.5MM独独立音频接口采集功能。编码输出双码流H.264格式,音频MP3/AAC格式。编码码率可调,画面质量可控制。支持HTTP/RTSP…...
LangChain入门:14.LLMChain:最简单的链的使用
摘要 本文将介绍LangChain库中LLMChain工具的使用方法。LLMChain将提示模板、语言模型(LLM)和输出解析器整合在一起,形成一个连贯的处理链,简化了与语言模型的交互过程。我们将探讨LLMChain的技术特点、应用场景以及它解决的问题…...
深入理解k8s kube-proxy
1、概述 我觉得只要大家知道kube-proxy是用来配置网络规则的而不是转发流量的,真正的流量由iptables/ipvs来转发就可以了。 网络是k8s的一个关键部分。理解k8s中网络组件如何工作可以帮助更好的设计和配置我们的应用。 kube-proxy就是K8s网络的核心组件。它把我们…...
Spark-机器学习(1)什么是机器学习与MLlib算法库的认识
从这一系列开始,我会带着大家一起了解我们的机器学习,了解我们spark机器学习中的MLIib算法库,知道它大概的模型,熟悉并认识它。同时,本篇文章为个人spark免费专栏的系列文章,有兴趣的可以收藏关注一下&…...
java的正则表达式校验,包含了中国几乎所有运营商手机号码的校验格式
时间2024年4月14日22:25:00 代码 String PHONE_REGEX "^1([38][0-9]|4[579]|5[0-3,5-9]|6[6]|7[0135678]|9[89])\\d{8}$";解释 这个Java代码段定义了一个常量 PHONE_REGEX,它包含了一个正则表达式,用于匹配中国大陆的手机号码。下面是对这…...
C#简单工厂模式的实现
using System.Diagnostics.Metrics; using System.Runtime.InteropServices; using static 手写工厂模式.Program;namespace 手写工厂模式 {internal class Program{public interface eats {void eat();}//定义了一个接口public class rice : eats{public void eat() {Console.…...
.NET 设计模式—观察者模式(Observer Pattern)
简介 在.NET中,观察者模式是一种设计模式,它允许对象之间进行一对多的依赖关系。当一个对象的状态发生变化时,所有依赖于它的对象都会收到通知并自动更新。这种模式在事件驱动的设计中非常常见。 在.NET中实现观察者模式,通常涉…...
EasyUI Jquery 学习笔记 ——DataGrid(数据网格)与 Tree(树)详细版
1. DataGrid(数据网格)与 Tree(树) 1.1 Datagrid 数据网格 扩展自 $.fn.panel.defaults。通过 $.fn.datagrid.defaults 重写默认的 defaults。 数据网格(datagrid)以表格格式显示数据,并为选择、排序、分组和编辑数据提供了丰富的支持。数据网格(datagrid)的设计目…...
JAVA发票验真接口、票据ocr、数电票在线查验真伪
发票验真接口,,实时联网核验发票真伪,查验一致返回全票面信息,支持查验增值税发票管理系统开具的发票,支持批量核验发票,翔云发票查验送发票识别,助您摆脱手动输入繁琐,提升工作效率。 发票查验接口适用于银行、金融、代理记账等发票管理数量…...
el-date-picker调用回车事件
elementui的el-date-picker想要调用回车事件: <el-date-pickerv-model"state.date"type"date"value-format"YYYY-MM-DD HH:mm:ss"placeholder"选择日期"clearablekeydown.enter"handleDown"></el-date-…...
js学习总结
这里写目录标题 前情提要JavaScript书写位置1. 内部javaScript (不常用)2. 外部javaScript (常用)3.内联javaScript (常用) js中的输入和输出输出语法1. document.write()2. alert()3. console.log() 输入语法prompt() 前情提要 1. 在javaScript中的 分号 是可以省略的JavaScr…...
MES实施优势有哪些?MES制造执行系统的主要内容
各个行业之间也开始进入到了激烈的竞争当中,很多企业为了能够有效提升企业竞争力,都会通过提升自身实力的方式来提升竞争力。一些制造业也会在经营过程当中使用到MES系统,那么,mes系统的优势有哪些呢? 1、优化企业现场…...
ChatGPT 和 Elasticsearch:使用 Elastic 数据创建自定义 GPT
作者:Sandra Gonzales ChatGPT Plus 订阅者现在有机会创建他们自己的定制版 ChatGPT,称为 GPT,这替代了之前博客文章中讨论的插件。基于本系列的第一部分的基础 —— 我们深入探讨了在 Elastic Cloud 中设置 Elasticsearch 数据和创建向量嵌…...
MFC内存泄露
1、泄露代码示例 void X::SetApplicationBtn() {CMFCRibbonApplicationButton* pBtn GetApplicationButton();// 获取 Ribbon Bar 指针// 创建自定义按钮CCustomRibbonAppButton* pCustomButton new CCustomRibbonAppButton();pCustomButton->SetImage(IDB_BITMAP_Jdp26)…...
linux 下常用变更-8
1、删除普通用户 查询用户初始UID和GIDls -l /home/ ###家目录中查看UID cat /etc/group ###此文件查看GID删除用户1.编辑文件 /etc/passwd 找到对应的行,YW343:x:0:0::/home/YW343:/bin/bash 2.将标红的位置修改为用户对应初始UID和GID: YW3…...
【Web 进阶篇】优雅的接口设计:统一响应、全局异常处理与参数校验
系列回顾: 在上一篇中,我们成功地为应用集成了数据库,并使用 Spring Data JPA 实现了基本的 CRUD API。我们的应用现在能“记忆”数据了!但是,如果你仔细审视那些 API,会发现它们还很“粗糙”:有…...
Axios请求超时重发机制
Axios 超时重新请求实现方案 在 Axios 中实现超时重新请求可以通过以下几种方式: 1. 使用拦截器实现自动重试 import axios from axios;// 创建axios实例 const instance axios.create();// 设置超时时间 instance.defaults.timeout 5000;// 最大重试次数 cons…...
听写流程自动化实践,轻量级教育辅助
随着智能教育工具的发展,越来越多的传统学习方式正在被数字化、自动化所优化。听写作为语文、英语等学科中重要的基础训练形式,也迎来了更高效的解决方案。 这是一款轻量但功能强大的听写辅助工具。它是基于本地词库与可选在线语音引擎构建,…...
视频行为标注工具BehaviLabel(源码+使用介绍+Windows.Exe版本)
前言: 最近在做行为检测相关的模型,用的是时空图卷积网络(STGCN),但原有kinetic-400数据集数据质量较低,需要进行细粒度的标注,同时粗略搜了下已有开源工具基本都集中于图像分割这块,…...
QT3D学习笔记——圆台、圆锥
类名作用Qt3DWindow3D渲染窗口容器QEntity场景中的实体(对象或容器)QCamera控制观察视角QPointLight点光源QConeMesh圆锥几何网格QTransform控制实体的位置/旋转/缩放QPhongMaterialPhong光照材质(定义颜色、反光等)QFirstPersonC…...
Selenium常用函数介绍
目录 一,元素定位 1.1 cssSeector 1.2 xpath 二,操作测试对象 三,窗口 3.1 案例 3.2 窗口切换 3.3 窗口大小 3.4 屏幕截图 3.5 关闭窗口 四,弹窗 五,等待 六,导航 七,文件上传 …...
TSN交换机正在重构工业网络,PROFINET和EtherCAT会被取代吗?
在工业自动化持续演进的今天,通信网络的角色正变得愈发关键。 2025年6月6日,为期三天的华南国际工业博览会在深圳国际会展中心(宝安)圆满落幕。作为国内工业通信领域的技术型企业,光路科技(Fiberroad&…...
Python 训练营打卡 Day 47
注意力热力图可视化 在day 46代码的基础上,对比不同卷积层热力图可视化的结果 import torch import torch.nn as nn import torch.optim as optim from torchvision import datasets, transforms from torch.utils.data import DataLoader import matplotlib.pypl…...
