Hello 算法10:搜索
https://www.hello-algo.com/chapter_searching/binary_search/
二分查找法
给定一个长度为 n的数组 nums ,元素按从小到大的顺序排列,数组不包含重复元素。请查找并返回元素 target 在该数组中的索引。若数组不包含该元素,则返回 -1 。
# 首先初始化 i=0,j=n-1, 代表搜索区间是[0,n-1]
# 然后,循环执行以下2个步骤
# 1:m = (i+j)/2 ,向下取整,求出搜索区间的中间点
# 2:判断nums[m]和target的大小关系,有以下三种情况:
# a:nums[m] > target,说明目标在区间[i,m-1],所以让j = m - 1
# b: nums[m] < target,说明目标在区间[m+1,j],所以让i = m + 1
# c:说明已经找到目标值,因此返回索引m
代码如下:
def binary_search(nums: list[int], target: int):i, j = 0, len(nums) - 1while i <= j:m = (i+j) // 2if nums[m] > target:j = m -1elif nums[m] < target:i = m + 1else:return mreturn -1
优点:效率高,无需额外空间
缺点:仅适用于有序数据,仅使用数数组搜索,当数据量较小时,线性查找速度更快。
二分查找插入点
给定一个长度为 n的有序数组 nums 和一个元素 target ,数组不存在重复元素。现将 target 插入到数组 nums 中,并保持其有序性。若数组中已存在元素 target ,则插入到其左方。请返回插入后 target 在数组中的索引。
- 当target存在时,插入的索引就是taget的位置
- 当target不存在时:如果target > nums[m],让i = m +1 ,所以i在靠着大于等于目标的位置移动;反之j在靠着小于等于目标的位置移动,这导致的结果就是,最终i等于第一个比目标大的元素,j指向首个比目标小的元素。
可知,最终返回i即是插入的位置
def binary_search_insertion_simple(nums: list[int], target: int) -> int:"""二分查找插入点(无重复元素)"""i, j = 0, len(nums) - 1 # 初始化双闭区间 [0, n-1]while i <= j:m = (i + j) // 2 # 计算中点索引 mif nums[m] < target:i = m + 1 # target 在区间 [m+1, j] 中elif nums[m] > target:j = m - 1 # target 在区间 [i, m-1] 中else:return m # 找到 target ,返回插入点 m# 未找到 target ,返回插入点 ireturn i
重复值的情况
在上一题的基础上,规定数组可能包含重复元素,其余不变
def binary_search_insertion(nums: list[int], target: int) -> int:"""二分查找插入点(存在重复元素)"""i, j = 0, len(nums) - 1 # 初始化双闭区间 [0, n-1]while i <= j:m = (i + j) // 2 # 计算中点索引 mif nums[m] < target:i = m + 1 # target 在区间 [m+1, j] 中elif nums[m] > target:j = m - 1 # target 在区间 [i, m-1] 中else:j = m - 1 # 首个小于 target 的元素在区间 [i, m-1] 中# 返回插入点 ireturn i
查找左边界
def binary_search_left_edge(nums: list[int], target: int) -> int:"""二分查找最左一个 target"""# 等价于查找 target 的插入点i = binary_search_insertion(nums, target)# 未找到 target ,返回 -1if i == len(nums) or nums[i] != target:return -1# 找到 target ,返回索引 ireturn i
查找右边界
替换在 nums[m] == target
情况下的指针收缩操作即可,接下来介绍一些取巧的办法
-
复用左边界法,使查找目标加一
def binary_search_right_edge(nums: list[int], target: int) -> int:"""二分查找最右一个 target"""# 转化为查找最左一个 target + 1i = binary_search_insertion(nums, target + 1)# j 指向最右一个 target ,i 指向首个大于 target 的元素j = i - 1# 未找到 target ,返回 -1if j == -1 or nums[j] != target:return -1# 找到 target ,返回索引 jreturn j
-
转换为查找不存在的元素
当数组不包含目标元素时,最终i和j会分别指向首个大于、小于target的元素:
查找最左侧元素时,可以将目标设置为targe-0.5,最终返回i
查找最右侧元素时,可以将目标设置为target+0.5,最终返回j
哈希优化
在算法题中,通常通过将线性遍历替换为哈希搜索来提升时间复杂度。例如以下题目
给定一个整数数组
nums
和一个目标元素target
,请在数组中搜索“和”为target
的两个元素,并返回它们的数组索引。返回任意一个解即可。
线性遍历
开启一个两层循环,每次判断是否和为目标值。简单粗暴
def two_sum_brute_force(nums: list[int], target: int) -> list[int]:"""方法一:暴力枚举"""# 两层循环,时间复杂度为 O(n^2)n = len(nums)for i in range(n):for j in range(i+1, n):if nums[i] + nums[i] == target:return [i, j]return []
哈希查找
def two_sum_hash_table(nums: list[int], target: int) -> list[int]:"""方法二:辅助哈希表"""# 辅助哈希表,空间复杂度为 O(n)dic = {}n = len(nums)for i in range(n):if target - nums[i] not in dic:dic[nums[i]] = ielse:return [dic[target - nums[i]], i]return []
搜索算法总结
搜索算法根据实现方式可以分为以下两类:
- 通过遍历数据结构来定位元素,例如数组、图、树的遍历等
- 利用数据结构的特性,实现高效搜索,例如二分查找、哈希查找
暴力搜索
- 线性搜索,适用于数组、链表
- 广度优先和深度优先搜索,适用于图、树
优点是通用性好,容易理解,不需要对数据结构做预期处理;不需要额外空间。
缺点是此类算法的时间复杂度为O(n),因此在元素较多时效率较低
自适应搜索
自适应搜索利用数据结构的特性来优化搜索
- 二分查找,利用有序性来进行搜索,仅适用于数组
- 哈希查找,利用哈希表将搜索数据和目标数据建立键值对映射,从而实现查询操作
- 树查找
效率高,可达到o(logn)甚至o(1)
缺点:需要对数据进行预处理,需要额外空间
搜索方法选取
表 10-1 查找算法效率对比
线性搜索 | 二分查找 | 树查找 | 哈希查找 | |
---|---|---|---|---|
查找元素 | O(n) | O(logn) | O(logn) | O(1) |
插入元素 | O(1) | O(n) | O(logn) | O(1) |
删除元素 | O(n) | O(n) | O(logn) | O(1) |
额外空间 | O(1) | O(1) | O(logn) | O(n) |
数据预处理 | / | 排序 O(nlogn) | 建树 O(nlogn) | 建哈希表 O(n) |
数据是否有序 | 无序 | 有序 | 有序 | 无序 |
搜索算法的选择还取决于数据体量、搜索性能要求、数据查询与更新频率等。
相关文章:

Hello 算法10:搜索
https://www.hello-algo.com/chapter_searching/binary_search/ 二分查找法 给定一个长度为 n的数组 nums ,元素按从小到大的顺序排列,数组不包含重复元素。请查找并返回元素 target 在该数组中的索引。若数组不包含该元素,则返回 -1 。 # 首…...

常见分类算法详解
在机器学习和数据科学的广阔领域中,分类算法是至关重要的一环。它广泛应用于各种场景,如垃圾邮件检测、图像识别、情感分析等。本文将深入剖析几种常见的分类算法,帮助读者理解其原理、优缺点以及应用场景。 一、K近邻算法(K-Nea…...

推送恶意软件的恶意 PowerShell 脚本看起来是人工智能编写的
威胁行为者正在使用 PowerShell 脚本,该脚本可能是在 OpenAI 的 ChatGPT、Google 的 Gemini 或 Microsoft 的 CoPilot 等人工智能系统的帮助下创建的。 攻击者在 3 月份的一次电子邮件活动中使用了该脚本,该活动针对德国的数十个组织来传播 Rhadamanthy…...

微服务之Consul 注册中心介绍以及搭建
一、微服务概述 1.1单体架构 单体架构(monolithic structure):顾名思义,整个项目中所有功能模块都在一个工程中开发;项目部署时需要对所有模块一起编译、打包;项目的架构设计、开发模式都非常简单。 当项…...

MES生产管理系统:私有云、公有云与本地化部署的比较分析
随着信息技术的迅猛发展,云计算作为一种新兴的技术服务模式,已经深入渗透到企业的日常运营中。在众多部署方式中,私有云、公有云和本地化部署是三种最为常见的选择。它们各自具有独特的特点和适用场景,并在不同程度上影响着企业的…...

【core analyzer】core analyzer的介绍和安装详情
目录 🌞1. core和core analyzer的基本概念 🌼1.1 coredump文件 🌼1.2 core analyzer 🌞2. core analyzer的安装详细过程 🌼2.1 方式一 简单但不推荐 🌼2.2 方式二 推荐 🌻2.2.1 安装遇到…...
个人练习之-jenkins
虚拟机环境搭建(买不起服务器 like me) 重点: 0 虚拟机防火墙关闭 systemctl stop firewalld.service systemctl disable firewalld.service 1 (centos7.6)网络配置 (vmware 编辑 -> 虚拟网络编辑器 -> 选择NAT模式 ->NAT设置查看网关) vim /etc/sysconfig/network-sc…...

初探vercel托管项目
文章目录 第一步、注册与登录第二步、本地部署 在个人网站部署的助手vercel,支持 Github部署,只需简单操作,即可发布,方便快捷! 第一步、注册与登录 进入vercel【官网】,在右上角 login on,可登…...

软考 - 系统架构设计师 - 质量属性例题 (2)
问题1: 、 问题 2: 系统架构风险:指架构设计中 ,潜在的,存在问题的架构决策所带来的隐患。 敏感点:指为了实现某个质量属性,一个或多个构件所具有的特性 权衡点:指影响多个质量属性…...

基于Python豆瓣电影数据可视化分析系统的设计与实现
大数据可视化项目——基于Python豆瓣电影数据可视化分析系统的设计与实现 2024最新项目 项目介绍 本项目旨在通过对豆瓣电影数据进行综合分析与可视化展示,构建一个基于Python的大数据可视化系统。通过数据爬取收集、清洗、分析豆瓣电影数据,我们提供了…...

【已开源】基于stm32f103的爬墙小车
基于stm32f103的遥控器无线控制爬墙小车,实现功能为可平衡在竖直墙面上,并进行移动和转向,具有超声波防撞功能。 直接上: 演示视频如:哔哩哔哩】 https://b23.tv/BzVTymO 项目说明: 在这个项目中&…...
PCL 基于马氏距离KMeans点云聚类
文章目录 一、简介二、算法步骤三、代码实现四、实现效果参考资料一、简介 在诸多的聚类方法中,K-Means聚类方法是属于“基于原型的聚类”(也称为原型聚类)的方法,此类方法均是假设聚类结构能通过一组原型刻画,在现实聚类中极为常用。通常情况下,该类算法会先对原型进行初始…...

libVLC 视频窗口上叠加透明窗口
很多时候,我们需要在界面上画一些三角形、文字等之类的东西,我们之需要重写paintEvent方法,比如像这样 void Widget::paintEvent(QPaintEvent *event) 以下就是重写的代码。 void Widget::paintEvent(QPaintEvent *event) {//创建QPainte…...

MySQL基础入门上篇
MySQL基础 介绍 mysql -uroot -p -h127.0.0.1 -P3306项目设计 具备数据库一定的设计能力和操作数据的能力。 数据库设计DDL 定义 操作 显示所有数据库 show databases;创建数据库 create database db02;数据库名唯一,不能重复。 查询是否创建成功 加入一些…...
Docker搭建FFmpeg
FFmpeg 是一套可以用来记录、转换数字音频、视频,并能将其转化为流的完整解决方案。FFmpeg 包含了领先的音视频编解码库libavcodec,可以用于各种视频格式的转换。 应用场景包括: 视频转换:把视频从一种格式转换成另一种格式。视…...

Hudi-ubuntu环境搭建
hudi-ubuntu环境搭建 运行 1.编译Hudi #1.把maven安装包上传到服务器 # 官网下载安装包 https://archive.apache.org/dist/maven/maven-3/ scp -r D:\Users\zh\Desktop\Hudi\compressedPackage\apache-maven-3.6.3-bin.tar.gz zhangheng10.8.4.212:/home/zhangheng/hudi/com…...
Hive进阶Day05
一、HDFS分布式文件存储系统 1-1 HDFS的存储机制 按块(block)存储 hdfs在对文件数据进行存储时,默认是按照128M(包含)大小进行文件数据拆分,将不同拆分的块数据存储在不同datanode服务器上 拆分后的块数据会被分别存储在不同的服…...

ssh爆破服务器的ip-疑似肉鸡
最近发现自己的ssh一直有一些人企图使用ssh暴力破解的方式进行密码破解.就查看了一下,真是网络安全太可怕了. 大家自己的服务器密码还是要设置好,管好,做好最基本的安全措施,不然最后只能沦为肉鸡. ssh登陆日志可以在/var/log下看到,ubuntu的话为auth.log,centos为secure文件 查…...
4.JVM八股
JVM空间划分 线程共享和线程私有 1.7: 线程共享: 堆、方法区 线程私有: 虚拟机栈、本地方法栈、程序计数器 本地内存 1.8: 线程共享: 堆 线程私有: 老三样 本地内存,元空间 程序计数器 …...

内网渗透系列-mimikatz的使用以及后门植入
内网渗透系列-mimikatz的使用以及后门植入 文章目录 内网渗透系列-mimikatz的使用以及后门植入前言mimikatz的使用后门植入 msf永久后门植入 (1)Meterpreter后门:Metsvc(2)Meterpreter后门:Persistence NC后…...
[特殊字符] 智能合约中的数据是如何在区块链中保持一致的?
🧠 智能合约中的数据是如何在区块链中保持一致的? 为什么所有区块链节点都能得出相同结果?合约调用这么复杂,状态真能保持一致吗?本篇带你从底层视角理解“状态一致性”的真相。 一、智能合约的数据存储在哪里…...

从WWDC看苹果产品发展的规律
WWDC 是苹果公司一年一度面向全球开发者的盛会,其主题演讲展现了苹果在产品设计、技术路线、用户体验和生态系统构建上的核心理念与演进脉络。我们借助 ChatGPT Deep Research 工具,对过去十年 WWDC 主题演讲内容进行了系统化分析,形成了这份…...

HTML 列表、表格、表单
1 列表标签 作用:布局内容排列整齐的区域 列表分类:无序列表、有序列表、定义列表。 例如: 1.1 无序列表 标签:ul 嵌套 li,ul是无序列表,li是列表条目。 注意事项: ul 标签里面只能包裹 li…...

全球首个30米分辨率湿地数据集(2000—2022)
数据简介 今天我们分享的数据是全球30米分辨率湿地数据集,包含8种湿地亚类,该数据以0.5X0.5的瓦片存储,我们整理了所有属于中国的瓦片名称与其对应省份,方便大家研究使用。 该数据集作为全球首个30米分辨率、覆盖2000–2022年时间…...

HBuilderX安装(uni-app和小程序开发)
下载HBuilderX 访问官方网站:https://www.dcloud.io/hbuilderx.html 根据您的操作系统选择合适版本: Windows版(推荐下载标准版) Windows系统安装步骤 运行安装程序: 双击下载的.exe安装文件 如果出现安全提示&…...

图表类系列各种样式PPT模版分享
图标图表系列PPT模版,柱状图PPT模版,线状图PPT模版,折线图PPT模版,饼状图PPT模版,雷达图PPT模版,树状图PPT模版 图表类系列各种样式PPT模版分享:图表系列PPT模板https://pan.quark.cn/s/20d40aa…...

RabbitMQ入门4.1.0版本(基于java、SpringBoot操作)
RabbitMQ 一、RabbitMQ概述 RabbitMQ RabbitMQ最初由LShift和CohesiveFT于2007年开发,后来由Pivotal Software Inc.(现为VMware子公司)接管。RabbitMQ 是一个开源的消息代理和队列服务器,用 Erlang 语言编写。广泛应用于各种分布…...
Kafka主题运维全指南:从基础配置到故障处理
#作者:张桐瑞 文章目录 主题日常管理1. 修改主题分区。2. 修改主题级别参数。3. 变更副本数。4. 修改主题限速。5.主题分区迁移。6. 常见主题错误处理常见错误1:主题删除失败。常见错误2:__consumer_offsets占用太多的磁盘。 主题日常管理 …...

Kubernetes 节点自动伸缩(Cluster Autoscaler)原理与实践
在 Kubernetes 集群中,如何在保障应用高可用的同时有效地管理资源,一直是运维人员和开发者关注的重点。随着微服务架构的普及,集群内各个服务的负载波动日趋明显,传统的手动扩缩容方式已无法满足实时性和弹性需求。 Cluster Auto…...

快速排序算法改进:随机快排-荷兰国旗划分详解
随机快速排序-荷兰国旗划分算法详解 一、基础知识回顾1.1 快速排序简介1.2 荷兰国旗问题 二、随机快排 - 荷兰国旗划分原理2.1 随机化枢轴选择2.2 荷兰国旗划分过程2.3 结合随机快排与荷兰国旗划分 三、代码实现3.1 Python实现3.2 Java实现3.3 C实现 四、性能分析4.1 时间复杂度…...