当前位置: 首页 > news >正文

OpenCV基本图像处理操作(三)——图像轮廓

轮廓

cv2.findContours(img,mode,method)

mode:轮廓检索模式

  • RETR_EXTERNAL :只检索最外面的轮廓;
  • RETR_LIST:检索所有的轮廓,并将其保存到一条链表当中;
  • RETR_CCOMP:检索所有的轮廓,并将他们组织为两层:顶层是各部分的外部边界,第二层是空洞的边界;
  • RETR_TREE:检索所有的轮廓,并重构嵌套轮廓的整个层次;

method:轮廓逼近方法

  • CHAIN_APPROX_NONE:以Freeman链码的方式输出轮廓,所有其他方法输出多边形(顶点的序列)。
  • CHAIN_APPROX_SIMPLE:压缩水平的、垂直的和斜的部分,也就是,函数只保留他们的终点部分。
  • 在这里插入图片描述
def cv_show(img,name):cv2.imshow(name,img)cv2.waitKey()cv2.destroyAllWindows()
img = cv2.imread('contours.png')
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
ret, thresh = cv2.threshold(gray, 127, 255, cv2.THRESH_BINARY)
binary, contours, hierarchy = cv2.findContours(thresh, cv2.RETR_TREE, cv2.CHAIN_APPROX_NONE)
cv_show(img,'img')

在这里插入图片描述

#传入绘制图像,轮廓,轮廓索引,颜色模式,线条厚度
# 注意需要copy,要不原图会变。。。
draw_img = img.copy()
res = cv2.drawContours(draw_img, contours, -1, (0, 0, 255), 2)
cv_show(res,'res')

在这里插入图片描述

面积、周长参数
cnt = contours[0]
#面积
cv2.contourArea(cnt)
#周长,True表示闭合的
cv2.arcLength(cnt,True)

在这里插入图片描述

模拟绘制轮廓
img = cv2.imread('contours2.png')gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
ret, thresh = cv2.threshold(gray, 127, 255, cv2.THRESH_BINARY)
contours, hierarchy = cv2.findContours(thresh, cv2.RETR_TREE, cv2.CHAIN_APPROX_NONE)
cnt = contours[0]draw_img = img.copy()
res = cv2.drawContours(draw_img, [cnt], -1, (0, 0, 255), 2)
cv_show(res,'res')

33在这里插入图片描述

轮廓近似
epsilon = 0.15*cv2.arcLength(cnt,True) 
approx = cv2.approxPolyDP(cnt,epsilon,True)draw_img = img.copy()
res = cv2.drawContours(draw_img, [approx], -1, (0, 0, 255), 2)
cv_show(res,'res')

在这里插入图片描述

边界矩形
img = cv2.imread('contours.png')gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
ret, thresh = cv2.threshold(gray, 127, 255, cv2.THRESH_BINARY)
contours, hierarchy = cv2.findContours(thresh, cv2.RETR_TREE, cv2.CHAIN_APPROX_NONE)
cnt = contours[0]x,y,w,h = cv2.boundingRect(cnt)
img = cv2.rectangle(img,(x,y),(x+w,y+h),(0,255,0),2)
cv_show(img,'img')area = cv2.contourArea(cnt)
x, y, w, h = cv2.boundingRect(cnt)
rect_area = w * h
extent = float(area) / rect_area
print ('轮廓面积与边界矩形比',extent)

在这里插入图片描述

外接圆
(x,y),radius = cv2.minEnclosingCircle(cnt) 
center = (int(x),int(y)) 
radius = int(radius) 
img = cv2.circle(img,center,radius,(0,255,0),2)
cv_show(img,'img')

在这里插入图片描述

相关文章:

OpenCV基本图像处理操作(三)——图像轮廓

轮廓 cv2.findContours(img,mode,method) mode:轮廓检索模式 RETR_EXTERNAL :只检索最外面的轮廓;RETR_LIST:检索所有的轮廓,并将其保存到一条链表当中;RETR_CCOMP:检索所有的轮廓,并将他们组…...

比特币突然暴跌

作者:秦晋 周末愉快。 今天给大家分享两则比特币新闻,也是两个数据。一则是因为中东地缘政治升温,传统资本市场的风险情绪蔓延至加密市场,引发加密市场暴跌。比特币跌至66000美元下方。杠杆清算金额高达8.5亿美元。 二则是&#x…...

使用SpeechRecognition和vosk处理ASR

SpeechRecognition可以支持多种模型语音转文字,感觉vosk还不错,使用起来也简单一些;百度也有PaddleSpeech,但是安装起来太麻烦,不是这个库版本不对就是那个库有问题,用起来不方便; 安装SpeechR…...

【Go】通道:缓冲通道和非缓冲通道

目录 通道的基本概念 缓冲通道 非缓冲通道 总结 通道的基本概念 在Go语言中,通道是一种特殊的类型,用于在goroutine之间传递数据。你可以将通道想象为数据的传输管道。通道分为两种类型: 非缓冲通道(Unbuffered Channels&…...

Java中数组的使用

在Java编程中,数组是一种非常重要的数据结构,它允许我们存储相同类型的多个元素。对于初学者来说,理解数组的基本概念、初始化、遍历、默认值以及内存分配和使用注意事项是非常关键的。 一、数组的概念 数组是一个可以容纳多个相同类型数据…...

CAP5_Monday

A Set to Max (Easy Version) 给定数组 a 和 b,可以执行以下操作任意次 : 让 a l ∼ a r a_l\sim a_r al​∼ar​ 中的所有所有元素变成 a i a_i ai​ ( l ≤ i ≤ r ) (l\leq i\leq r) (l≤i≤r), 其中 1 ≤ l ≤ r ≤ n 1\leq l \leq r \leq n 1≤…...

科大讯飞星火开源大模型iFlytekSpark-13B GPU版部署方法

星火大模型的主页:iFlytekSpark-13B: 讯飞星火开源-13B(iFlytekSpark-13B)拥有130亿参数,新一代认知大模型,一经发布,众多科研院所和高校便期待科大讯飞能够开源。 为了让大家使用的更加方便,科…...

SpringBoot基于RabbitMQ实现消息延迟队列方案

知识小科普 在此之前,简单说明下基于RabbitMQ实现延时队列的相关知识及说明下延时队列的使用场景。 延时队列使用场景 在很多的业务场景中,延时队列可以实现很多功能,此类业务中,一般上是非实时的,需要延迟处理的&a…...

Go语言使用标准库时常见错误

Go的标准库是一组增加和拓展语言的核心包。然而,很容易误用标准库,或者我们对其行为理解有限,导致产生了bug或不应该在生产级应用程序中某些功能。 1. 提供错误的持续时间 标准库提供了获取 time.Duration 的常用函数和方法,但由于 time.Duration 是 int64 的自定义类型,…...

UE5不打包启用像素流 ubuntu22.04

首先查找引擎中像素流的位置: zkzk-ubuntu2023:/media/zk/Data/Linux_Unreal_Engine_5.3.2$ sudo find ./ -name get_ps_servers.sh [sudo] zk 的密码: ./Engine/Plugins/Media/PixelStreaming/Resources/WebServers/get_ps_servers.sh然后在指定路径中…...

Redis 常用数据类型常用命令和应用场景

首先先混个眼熟 Redis 中的 8 种常用数据类型: 5 种基础数据类型:String(字符串)、List(列表)、Set(集合)、Hash(散列)、Zset(有序集合&#xff0…...

ins视频批量下载,instagram批量爬取视频信息

简介 Instagram 是目前最热门的社交媒体平台之一,拥有大量优质的视频内容。但是要逐一下载这些视频往往非常耗时。在这篇文章中,我们将介绍如何使用 Python 编写一个脚本,来实现 Instagram 视频的批量下载和信息爬取。 我们使用selenium获取目标用户的 HTML 源代码,并将其保存…...

Canvas图形编辑器-数据结构与History(undo/redo)

Canvas图形编辑器-数据结构与History(undo/redo) 这是作为 社区老给我推Canvas,于是我也学习Canvas做了个简历编辑器 的后续内容,主要是介绍了对数据结构的设计以及History能力的实现。 在线编辑: https://windrunnermax.github.io/CanvasEditor开源地…...

阿里云Centos7下编译glibc

编译glibc 原来glibc版本 编译前需要的环境: CentOS7 gcc 8.3.0 gdb 8.3.0 make 4.0 binutils 2.39 (ld -v) python 3.6.8 其他看INSTALL, 但有些版本也不易太高 wget https://mirrors.aliyun.com/gnu/glibc/glibc-2.37.tar.gz tar -zxf glibc-2.37.tar.gz cd glibc-2.37/ …...

UE5数字孪生系列笔记(四)

场景的切换 创建一个按钮的用户界面UMG 创建一个Actor,然后将此按钮UMG添加到组件Actor中 调节几个全屏的背景 运行结果 目标点切换功能制作 设置角色到这个按钮的位置效果 按钮被点击就进行跳转 多个地点的切换与旋转 将之前的目标点切换逻辑替换成旋转的逻…...

品牌故事化:Kompas.ai如何塑造深刻的品牌形象

在这个信息爆炸的时代,品牌故事化已经成为企业塑造独特形象、与消费者建立情感联系的重要手段。一个引人入胜的品牌故事不仅能够吸引消费者的注意力,还能够在消费者心中留下持久的印象,建立起强烈的情感连接。本文将深入探讨品牌故事化对于构…...

5g和2.4g频段有什么区别

运行的频段不同 2.4G和5G频段的主要区别在于它们运行的频段不同,2.4G频段运行在2.4GHz的频段上,而5G频段(这里指的是5GHz频段)运行在5GHz的频段上。12 这导致了两者在传输速度、覆盖范围、抗干扰能力等方面的明显差异。以下是详…...

交通管理在线服务系统|基于Springboot的交通管理系统设计与实现(源码+数据库+文档)

交通管理在线服务系统目录 目录 基于Springboot的交通管理系统设计与实现 一、前言 二、系统功能设计 三、系统实现 1、用户信息管理 2、驾驶证业务管理 3、机动车业务管理 4、机动车业务类型管理 四、数据库设计 1、实体ER图 五、核心代码 六、论文参考 七、最新计…...

konva.js 工具类

konva.js 工具类 class KonvaCanvas {/*** 初始化画布* param {String} domId 容器dom id*/constructor(domId) {this.layer null;this.stage null;this.scale 1;this.init(domId);}/*** 聚焦到指定元素* param {String} elementId 元素dom id*/focusOn(elementId) {if (!t…...

php未能在vscode识别?

在设置里搜php,找到settings.json,设置你的安装路径即可。 成功...

MPNet:旋转机械轻量化故障诊断模型详解python代码复现

目录 一、问题背景与挑战 二、MPNet核心架构 2.1 多分支特征融合模块(MBFM) 2.2 残差注意力金字塔模块(RAPM) 2.2.1 空间金字塔注意力(SPA) 2.2.2 金字塔残差块(PRBlock) 2.3 分类器设计 三、关键技术突破 3.1 多尺度特征融合 3.2 轻量化设计策略 3.3 抗噪声…...

多模态大语言模型arxiv论文略读(108)

CROME: Cross-Modal Adapters for Efficient Multimodal LLM ➡️ 论文标题:CROME: Cross-Modal Adapters for Efficient Multimodal LLM ➡️ 论文作者:Sayna Ebrahimi, Sercan O. Arik, Tejas Nama, Tomas Pfister ➡️ 研究机构: Google Cloud AI Re…...

Web 架构之 CDN 加速原理与落地实践

文章目录 一、思维导图二、正文内容(一)CDN 基础概念1. 定义2. 组成部分 (二)CDN 加速原理1. 请求路由2. 内容缓存3. 内容更新 (三)CDN 落地实践1. 选择 CDN 服务商2. 配置 CDN3. 集成到 Web 架构 &#xf…...

人工智能(大型语言模型 LLMs)对不同学科的影响以及由此产生的新学习方式

今天是关于AI如何在教学中增强学生的学习体验,我把重要信息标红了。人文学科的价值被低估了 ⬇️ 转型与必要性 人工智能正在深刻地改变教育,这并非炒作,而是已经发生的巨大变革。教育机构和教育者不能忽视它,试图简单地禁止学生使…...

【MATLAB代码】基于最大相关熵准则(MCC)的三维鲁棒卡尔曼滤波算法(MCC-KF),附源代码|订阅专栏后可直接查看

文章所述的代码实现了基于最大相关熵准则(MCC)的三维鲁棒卡尔曼滤波算法(MCC-KF),针对传感器观测数据中存在的脉冲型异常噪声问题,通过非线性加权机制提升滤波器的抗干扰能力。代码通过对比传统KF与MCC-KF在含异常值场景下的表现,验证了后者在状态估计鲁棒性方面的显著优…...

嵌入式常见 CPU 架构

架构类型架构厂商芯片厂商典型芯片特点与应用场景PICRISC (8/16 位)MicrochipMicrochipPIC16F877A、PIC18F4550简化指令集,单周期执行;低功耗、CIP 独立外设;用于家电、小电机控制、安防面板等嵌入式场景8051CISC (8 位)Intel(原始…...

内窥镜检查中基于提示的息肉分割|文献速递-深度学习医疗AI最新文献

Title 题目 Prompt-based polyp segmentation during endoscopy 内窥镜检查中基于提示的息肉分割 01 文献速递介绍 以下是对这段英文内容的中文翻译: ### 胃肠道癌症的发病率呈上升趋势,且有年轻化倾向(Bray等人,2018&#x…...

GAN模式奔溃的探讨论文综述(一)

简介 简介:今天带来一篇关于GAN的,对于模式奔溃的一个探讨的一个问题,帮助大家更好的解决训练中遇到的一个难题。 论文题目:An in-depth review and analysis of mode collapse in GAN 期刊:Machine Learning 链接:...

深入解析光敏传感技术:嵌入式仿真平台如何重塑电子工程教学

一、光敏传感技术的物理本质与系统级实现挑战 光敏电阻作为经典的光电传感器件,其工作原理根植于半导体材料的光电导效应。当入射光子能量超过材料带隙宽度时,价带电子受激发跃迁至导带,形成电子-空穴对,导致材料电导率显著提升。…...

理想汽车5月交付40856辆,同比增长16.7%

6月1日,理想汽车官方宣布,5月交付新车40856辆,同比增长16.7%。截至2025年5月31日,理想汽车历史累计交付量为1301531辆。 官方表示,理想L系列智能焕新版在5月正式发布,全系产品力有显著的提升,每…...