当前位置: 首页 > news >正文

在浴室里做的网站/头条今日头条

在浴室里做的网站,头条今日头条,网站底部信息,只做正品的购物网站本文利用20Newsgroup这个数据集作为Corpus(语料库),用户可以通过搜索关键字来进行查询关联度最高的News,实现对文本的搜索引擎: 1. 导入数据集 from sklearn.datasets import fetch_20newsgroupsnewsgroups fetch_20newsgroups()print(fNu…

本文利用20Newsgroup这个数据集作为Corpus(语料库),用户可以通过搜索关键字来进行查询关联度最高的News,实现对文本的搜索引擎:

1. 导入数据集

from sklearn.datasets import fetch_20newsgroupsnewsgroups = fetch_20newsgroups()print(f'Number of documents: {len(newsgroups.data)}')
print(f'Sample document:\n{newsgroups.data[0]}')

2. 向量化单词

from sklearn.feature_extraction.text import CountVectorizer
count = CountVectorizer()
count.fit(newsgroups.data)
show_vocabulary(count)print(f'Size of vocabulary: {len(count.get_feature_names_out())}')def show_vocabulary(vectorizer):words = vectorizer.get_feature_names_out()print(f'Vocabulary size: {len(words)} words')# we can print ~10 words per linefor l in np.array_split(words, math.ceil(len(words) / 10)):print(''.join([f'{x:<15}' for x in l]))

3. 搜索引擎

#将语料库进行转化
corpus_bow = count.transform(newsgroups.data)#提供用户输入,对输入内容进行转化为BoW - Bag of word
query = input("Type your query: ")
query_bow = count.transform([query])from sklearn.metrics.pairwise import cosine_similarity#比较输入内容与语料库中的相似度
similarity_matrix = cosine_similarity(corpus_bow, query_bow)
print(f'Similarity Matrix Shape: {similarity_matrix.shape}')

得到Similarity_matrix一共有N行,表示语料库中的文档数。还有一列,代表相似度系数。

第K行的相似度系数,代表用户输入的文本与语料库中第K个文档的相似程度。

我们对相似度矩阵进行排序:

similarities = pd.Series(similarity_matrix[:, 0])
similarities.head(10)

那么和用户输入最相关的文档就是第一个了!

print('Best document:')
print(newsgroups.data[top_10.index[0]])

结论:本文利用Cosine_similarity比较文档的相似度,从语料库找出最佳匹配的文档。

如果对单词的向量化,BoW概念有问题可以看下我的另一篇文章。

CSDN

下面一篇文章我会具体分析Cosine_similarity的原理,敬请关注!

相关文章:

【大语言模型】应用:10分钟实现搜索引擎

本文利用20Newsgroup这个数据集作为Corpus(语料库)&#xff0c;用户可以通过搜索关键字来进行查询关联度最高的News&#xff0c;实现对文本的搜索引擎&#xff1a; 1. 导入数据集 from sklearn.datasets import fetch_20newsgroupsnewsgroups fetch_20newsgroups()print(fNu…...

UT单元测试

Tips&#xff1a;在使用时一定要注意版本适配性问题 一、Mockito 1.1 Mock的使用 Mock 的中文译为仿制的&#xff0c;模拟的&#xff0c;虚假的。对于测试框架来说&#xff0c;即构造出一个模拟/虚假的对象&#xff0c;使我们的测试能顺利进行下去。 Mock 测试就是在测试过程…...

leetcode-合并两个有序链表

目录 题目 图解 方法一 方法二 代码(解析在注释中) 方法一 ​编辑方法二 题目 将两个升序链表合并为一个新的 升序 链表并返回。新链表是通过拼接给定的两个链表的所有节点组成的。 示例 1&#xff1a; 输入&#xff1a;l1 [1,2,4], l2 [1,3,4] 输出&#xff1a;[1,1…...

006Node.js cnpm的安装

百度搜索 cnpm,进入npmmirror 镜像站https://npmmirror.com/ cmd窗口输入 npm install -g cnpm --registryhttps://registry.npmmirror.com...

web server apache tomcat11-01-官方文档入门介绍

前言 整理这个官方翻译的系列&#xff0c;原因是网上大部分的 tomcat 版本比较旧&#xff0c;此版本为 v11 最新的版本。 开源项目 同时也为从零手写实现 tomcat 提供一些基础和特性的思路。 minicat 别称【嗅虎】心有猛虎&#xff0c;轻嗅蔷薇。 系列文章 web server apac…...

java的总结

由于最近已经开始做项目了&#xff0c;所以对java的基础知识的学习都是一个离散化的状态没有一个很系统的学习&#xff0c;都是哪里不会就去学哪里。 先来讲一下前后端的区别吧 在我的理解前端就是&#xff1a;客户端在前端进行点击输入数据&#xff0c;前端将这些数据整合起来…...

解决npm run dev跑项目,发现node版本不匹配,怎么跑起来?【已解决】

首先问题点就是我们npm run dev 运行项目的时候发现出错&#xff0c;跑不起来&#xff0c;类型下面这种 这里的出错的原因在于我们的node版本跟项目的版本不匹配 解决办法 我这里的问题是我的版本是node14的&#xff0c;然后项目需要node20的&#xff0c;执行下面的就可以正…...

flood_fill 算法|图形渲染

flood fill 算法常常用来找极大连通子图&#xff0c;这是必须掌握的基本算法之一&#xff01; 图形渲染 算法原理 我们可以利用DFS遍历数组把首个数组的值记为color&#xff0c;然后上下左右四个方向遍历二维数组数组如果其他方块的值不等于color 或者越界就剪枝 return 代码…...

Promise简单概述

一. Promise是什么&#xff1f; 理解 1.抽象表达&#xff1a; Promise是一门新的技术(ES6规范) Promise是JS中进行异步编程的新解决方案(旧方案是单纯使用回调函数) 异步编程&#xff1a;包括fs文件操作&#xff0c;数据库操作(Mysql)&#xff0c;AJAX&#xff0c;定时器 2.具…...

【Java集合进阶】数据结构(平衡二又树旋转机制)数据结构(红黑树、红黑规则、添加节点处理方案详解)

&#x1f36c; 博主介绍&#x1f468;‍&#x1f393; 博主介绍&#xff1a;大家好&#xff0c;我是 hacker-routing &#xff0c;很高兴认识大家~ ✨主攻领域&#xff1a;【渗透领域】【应急响应】 【Java】 【VulnHub靶场复现】【面试分析】 &#x1f389;点赞➕评论➕收藏 …...

富文本在线编辑器 - tinymce

tinymce 项目是一个比较好的富文本编辑器. 这里有个小demo, 下载下来尝试一下, 需要配置个本地服务器才能够访问, 我这里使用的nginx, 下面是我的整个操作过程: git clone gitgitee.com:chick1993/layui-tinymce.git cd layui-tinymcewget http://nginx.org/download/nginx-1.…...

从汇编代码理解数组越界访问漏洞

数组越界访问漏洞是 C/C 语言中常见的缺陷&#xff0c;它发生在程序尝试访问数组元素时未正确验证索引是否在有效范围内。通常情况下&#xff0c;数组的索引从0开始&#xff0c;到数组长度减1结束。如果程序尝试访问小于0或大于等于数组长度的索引位置&#xff0c;就会导致数组…...

skynet 使用protobuf

一、安装protobuf 下面的操作方法都是在 centos 环境下操作 #下载 Protocol Buffers 源代码&#xff1a; #您可以从 Protocol Buffers 的 GitHub 仓库中获取特定版本的源代码。使用以下命令克隆仓库 git clone -b v3.20.3 https://github.com/protocolbuffers/protobuf.git#编译…...

Vue Router 4 与 Router 3 路由配置与区别

文章目录 路由安装路由配置vue-router 3.x版本写法配置路由使用路由 vue-router 4.x版本写法配置路由使用路由 Vue Router 4 与 Vue Router 3 区别 路由安装 Vue 2 (使用 Vue Router 3) &#xff1a;npm install vue-router3 Vue 3 (使用 Vue Router 4) &#xff1a;npm insta…...

python借助elasticsearch实现标签匹配计数

给定一组标签 [{“tag_id”: “1”, “value”: “西瓜”}, {“tag_id”: “1”, “value”: “苹果”}]&#xff0c;我想精准匹配到现有的标签库中存在的标签并记录匹配成功的数量。 标签id(tag_id)标签名(tag_name)标签值(tag_name )1水果西瓜1水果苹果1水果橙子2动物老虎 …...

Yolo-world+Python-OpenCV之摄像头视频实时目标检测

上一次介绍了如何使用最基本的 Yolo-word来做检测&#xff0c;现在我们在加opencv来做个实时检测的例子 基本思路 1、读取离线视频流 2、将视频帧给yolo识别 3、根据识别结果 对视频进行绘制边框、加文字之类的 完整代码如下&#xff1a; import datetimefrom ultralytics …...

vue-treeselect 的基本使用

vue-treeselect 的基本使用 1. 效果展示2. 安装 插件3. 引入组件4. 代码 1. 效果展示 2. 安装 插件 vue-treeselect是一个树形的下拉菜单&#xff0c;至于到底有多少节点那就要看你的数据源有多少层了&#xff0c;挺方便的。下面这个这个不用多说吧&#xff0c;下载依赖 npm in…...

Vue(二)

文章目录 1.条件渲染1.关于js中的false的判定2.基本介绍3.v-if1.需求分析2.代码实例 4.v-show实现5.v-if与v-show比较6.课后练习 2.列表渲染1.代码实例2.课后练习 3.组件化编程1.基本介绍2.实现方式一_普通方式2.实现方式二_全局组件方式3.实现方式三_局部组件方式 4.生命周期和…...

Python基于深度学习的车辆特征分析系统

博主介绍&#xff1a;✌程序员徐师兄、7年大厂程序员经历。全网粉丝12w、csdn博客专家、掘金/华为云/阿里云/InfoQ等平台优质作者、专注于Java技术领域和毕业项目实战✌ &#x1f345;文末获取源码联系&#x1f345; &#x1f447;&#x1f3fb; 精彩专栏推荐订阅&#x1f447;…...

推理还原的干货

故事的递进还原 从下层故事到上层故事 设定还原 还原的逻辑 隐藏信息拼凑、因果导致果推因、规则还原现象 设计思路&#xff1a; 真解答 真解答的关键信息 推理逻辑链 哪些环节可以被误导 如何把关键信息变成伪解答 解释变形信息 给出识别变形信息的方法或线索 其实看似一个…...

【Redis 神秘大陆】006 灾备方案

六、Redis 灾备方案 6.1 存储方案 6.1.1 基础对比 RDB持久化AOF持久化原理周期性fork子进程生成持久化文件每次写入记录命令日志文件类型二进制dump快照文件文本appendonly日志文件触发条件默认超过300s间隔且有1s内超过1kb数据变更永久性每秒fsync一次文件位置配置文件中指…...

【Java基础】17.异常处理

文章目录 前言一、异常的概念1.异常的3种类型2.支持异常处理的关键字和类 二、Exception 类的层次三、内置异常类1.非检查性异常2.检查性异常类 四、异常处理1.捕获异常2.多重捕获块3.throws/throw 关键字1.throw 关键字2.throws 关键字 3.finally关键字 五、编译时异常处理方式…...

【python】flask结合SQLAlchemy,在视图函数中实现对数据库的增删改查

✨✨ 欢迎大家来到景天科技苑✨✨ &#x1f388;&#x1f388; 养成好习惯&#xff0c;先赞后看哦~&#x1f388;&#x1f388; &#x1f3c6; 作者简介&#xff1a;景天科技苑 &#x1f3c6;《头衔》&#xff1a;大厂架构师&#xff0c;华为云开发者社区专家博主&#xff0c;…...

APIGateway的认证

APIGateway的支持的认证如下&#xff1a; 我们从表格中可以看到&#xff0c;HTTP API 不支持资源策略的功能&#xff0c;另外是通过JWT的方式集成Cognito的。 对于REST API则是没有显示说明支持JWT认证&#xff0c;这个我们可以通过Lambda 自定义的方式来实现。 所以按照这个…...

MacOS Github Push项目 精简版步骤

大白菜教程&#xff1a;小白菜 macOS github提交代码-CSDN博客 步骤1&#xff1a;git init步骤2&#xff1a; touch .gitignore 创建ignore文件 open .gitignore 打开ignore文件 编写ignore文件.idea/ 是文件夹的意思.git/ 也是自动生成的文件夹 也不上传.DS_St…...

Eclipse的基本使用讲解(建项目,建包,建类,写代码(基本语法))新手入门必备

目录 一.介绍eclipse 二.操作Eclipse 1.选择工作空间 2.建项目&#xff0c;建包&#xff0c;建类 1.建项目(两种) 2.建包 3.建类 三.写代码(基本语法) 1.代码操作 2.代码规范 3.代码注释 一.介绍eclipse Eclipse 是一个开放源代码的、基于Java的可扩展开发平台。就其…...

3D模型处理的并行化

今天我们将讨论如何使用 Python 多进程来处理大量3D数据。 我将讲述一些可能在手册中找到的一般信息&#xff0c;并分享我发现的一些小技巧&#xff0c;例如将 tqdm 与多处理 imap 结合使用以及并行处理存档。 那么我们为什么要诉诸并行计算呢&#xff1f; 使用数据有时会出现…...

盲人安全导航技巧:科技赋能让出行更自如

作为一名资深记者&#xff0c;长期关注并报道无障碍领域的发展动态。今日&#xff0c;我将聚焦盲人安全导航技巧&#xff0c;探讨这一主题下科技如何赋能视障人士实现更为安全、独立的出行。一款融合了实时避障、拍照识别物体及场景功能的盲人出行辅助应用叫做蝙蝠避障&#xf…...

问,由于java存在性能上,以及部分功能上的缺点,请问如何正确使用C,C++,Go,这三个语言,提升Java Web项目的性能?

拓展阅读&#xff1a;版本任你发&#xff0c;我用java8 我明白Java虽然在许多方面表现出色&#xff0c;但在某些特定场景下可能会遇到性能瓶颈或功能限制。为了提升Java Web项目的性能&#xff0c;可以考虑将C、C和Go这三种语言用于特定的组件或服务。以下是如何正确使用这些语…...

【信号与系统 - 9】傅里叶变换的性质习题

1 习题 已知 f ( t ) f(t) f(t) 的傅里叶变换为 F ( j w ) F(jw) F(jw) &#xff0c;求如下信号的傅里叶变换 &#xff08;1&#xff09; t ⋅ f ( 3 t ) t\cdot f(3t) t⋅f(3t) 解&#xff1a; f ( 3 t ) ↔ 1 3 F ( j w 3 ) f(3t)\leftrightarrow \frac{1}{3}F(j\frac{w}…...