当前位置: 首页 > news >正文

【免费】基于SOE算法的多时段随机配电网重构方法

主要内容

该程序是完全复现《Switch Opening and Exchange Method for Stochastic Distribution Network Reconfiguration》,也是一个开源代码,网上有些人卖的还挺贵,本次免费分享给大家,代码主要做的是一个通过配电网重构获取最优网络拓扑的问题,从而有效降低网损,提高经济效益,同时考虑了光伏和负荷的随机性,构建了多时段随机配电网重构模型,考虑到大型网络中计算较为耗时,采用一种基于开断和交换的SOE方法,已获得良好的径向拓扑,采用IEEE多个标准算例进行了测试,更加创新,而且求解的效果更好,结果和论文基本是一致,代码质量非常高,但是子程序比较多,适合有编程经验的同学学习!

部分程序

% core programme in decrese_reconfig_33.m   already obtain optimal solution, no need to execute tabu
clear all, clc, close all
addpath('./code')
%% basic setting
tic
fprintf('decrease_reconfig_33_tabu.m \n')
warning('off')
addpath(pathdef)
mpopt = mpoption;
mpopt.out.all = 0; % do not print anything
mpopt.verbose = 0;
version_LODF = 0 % 1: use decrease_reconfig_algo_LODF.m% 0: use decrease_reconfig_algo.m
​
candi_brch_bus = []; % candidate branch i added to bus j
% mpc0 = case33;
casei=4
d33zhu_v2
substation_node = 1;        n_bus = 33;
​
n1 = 3
n2 = 5
n1_down_substation = n1+1;    n2_up_ending = n2;
​
Branch0 = Branch;
brch_idx_in_loop0 = unique(brch_idx_in_loop(:));
​
%% original network's power flow (not radial)
% show_biograph(Branch, Bus)
from_to = show_biograph_not_sorted(Branch, substation_node, 0); 
mpc = generate_mpc(Bus, Branch, n_bus);
res_orig = runpf(mpc, mpopt);
losses = get_losses(res_orig.baseMVA, res_orig.bus, res_orig.branch);
loss0 = sum(real(losses));
fprintf('case33_tabu: original loop network''s loss is %.5f \n\n', loss0)
​
% for each branch in a loop, 
% if open that branch does not cause isolation, check the two ending buses 
% of that branch for connectivity, realized by shortestpath or conncomp
% calculate the lowest loss increase, print out the sorted loss increase 
% open the branch with lowest loss increase
% stop criterion: number of buses - number of branches = 1
​
%% ------------------------ Core algorithm ------------------------%%
ff0 = Branch(:, 1);   ff = ff0;
tt0 = Branch(:, 2);   tt = tt0;
t1 = toc;
if version_LODF[Branch] = decrease_reconfig_algo_LODF(Bus, Branch, brch_idx_in_loop, ...ff0, tt0, substation_node, n_bus, loss0); %%%  core algorithm
else[Branch] = decrease_reconfig_algo(Bus, Branch, brch_idx_in_loop, ff0, tt0, ...substation_node, n_bus, loss0); %%%  core algorithm
end
t2 = toc;
time_consumption.core = t2 - t1
​
% output of core algorithm
show_biograph = 0;
from_to = show_biograph_not_sorted(Branch(:, [1 2]), substation_node, ...0);
from_to0 = from_to;
mpc = generate_mpc(Bus, Branch, n_bus);
res_pf_dec = runpf(mpc, mpopt);
losses = get_losses(res_pf_dec.baseMVA, res_pf_dec.bus, res_pf_dec.branch);
loss0_dec = sum(real(losses));  % 
fprintf('case33_tabu: radial network obtained by my core algorithm''s loss is %.5f \n\n', loss0_dec)
​
Branch_loss_record = [];
% record Branch and loss
Branch_loss_record.core.Branch = Branch;
Branch_loss_record.core.loss = loss0_dec;
​
%% prepare force open branches for tabu: branch_idx_focused
[branch_idx_focused] = get_branch_idx_focused_for_tabu( ...from_to, Branch0, Branch, substation_node, brch_idx_in_loop0, n_bus, ...n1_down_substation, n2_up_ending);
​
%% ------------------------ Tabu algorithm ------------------------%%
% run the core program for each upstream branch connected to the idx_force_open
% idx_considered = [35 69]
% for iter = idx_considered
for iter = 1:length(branch_idx_focused)fprintf('iter=%d/%d\n', iter, length(branch_idx_focused));Branch = Branch0;Branch(branch_idx_focused(iter), :) = [];ff0 = Branch(:, 1);   ff = ff0;tt0 = Branch(:, 2);   tt = tt0;brch_idx_in_loop = brch_idx_in_loop0;idx_tmp = find(brch_idx_in_loop == branch_idx_focused(iter));if isempty(idx_tmp)elsebrch_idx_in_loop(idx_tmp) = [];brch_idx_in_loop(idx_tmp:end) = brch_idx_in_loop(idx_tmp:end)-1;end
​t1 = toc;%%------------------- core algorithm in Tabu loop--------------------%%    if version_LODF[Branch] = decrease_reconfig_algo_LODF(Bus, Branch, brch_idx_in_loop, ...ff0, tt0, substation_node, n_bus, loss0); %%%  core algorithmelse[Branch] = decrease_reconfig_algo(Bus, Branch, brch_idx_in_loop, ff0, tt0, ...substation_node, n_bus, loss0); %%%  core algorithmendt2 = toc;    time_consumption.tabu(iter) = t2-t1;
​from_to = show_biograph_not_sorted(Branch(:, [1 2]), substation_node, ...show_biograph); %%% show figure, take timempc = generate_mpc(Bus, Branch, n_bus);t1 = toc;res_pf = runpf(mpc, mpopt);t2 = toc;    losses = get_losses(res_pf.baseMVA, res_pf.bus, res_pf.branch);lossi = sum(real(losses)) % loss = 0.5364loss_tabu(iter,1) = lossi;yij_dec = generate_yij_from_Branch(Branch, Branch0);
​% record Branch and lossBranch_loss_record.tabu(iter,1).Branch = Branch; Branch_loss_record.tabu(iter,1).loss = lossi;[PQ, PV, REF, NONE, BUS_I, BUS_TYPE, PD, QD, GS, BS, BUS_AREA, VM, ...VA, BASE_KV, ZONE, VMAX, VMIN, LAM_P, LAM_Q, MU_VMAX, MU_VMIN] = idx_bus;
%     Vm = res_pf.bus(:, VM)';
%     Va = res_pf.bus(:, VA)';
%     ending_bus = find_ending_node(Branch, substation_node);
%     [ending_bus'; Vm(ending_bus)]; %% ---------------------one open and one close---------------------%%   % prepare nodes_focused for one_open_one_closet1 = toc;[nodes_focused] = get_nodes_focused_o1c1( ...from_to, Branch, Branch0, substation_node, brch_idx_in_loop, ...n1_down_substation, n2_up_ending);
​loss_before_switch0 = lossi;[record_o1c1_loss_dec, loss_after_switch_combine_two_o1c1, Branch_loss] = ...one_open_one_close(nodes_focused, Bus, Branch0, Branch, from_to, ...substation_node, n_bus, loss_before_switch0);t2 = toc;time_consumption.tabu_o1c1(iter) = t2-t1;
​% record Branch and lossBranch_loss_record.tabu_o1c1_dec{iter}.Branch = Branch_loss.Branch_o1c1_dec; 
%     Branch_loss_record.tabu_o1c1_dec(iter,1).Branch = Branch_loss.Branch_o1c1_dec; Branch_loss_record.tabu_o1c1_dec{iter}.loss = Branch_loss.loss_o1c1_dec; Branch_loss_record.tabu_combine_2_o1c1_dec{iter}.Branch = ...Branch_loss.Branch_after_switch_combine_two_o1c1; Branch_loss_record.tabu_combine_2_o1c1_dec{iter}.loss = ...Branch_loss.loss_after_switch_combine_two_o1c1;  
​min_loss_o1c1 = min(record_o1c1_loss_dec(:,1));fprintf('case33_tabu: minimum loss obtained after ''one open and one close'': %.5f\n', ...min_loss_o1c1);
​min_loss_combine_two_o1c1 = 1e9;fprintf('case33_tabu: loss obtained after combine two ''one open and one close'': \n')for i = 1:length(loss_after_switch_combine_two_o1c1)temp = min(loss_after_switch_combine_two_o1c1{i});if temp %.5f \n', temp);end    fprintf('case33_tabu: minimum loss obtained after combine two ''one open and one close'': %.5f \n', ...min_loss_combine_two_o1c1)  %% ---------------------two open and two close---------------------%%flag_2o2c = 0if flag_2o2c == 1t1 = toc;loss_before_switch0 = lossi;[record_o2c2_loss_dec, loss_after_switch_combine_two_o2c2] = ...two_open_two_close(nodes_focused, Bus, Branch0, Branch, from_to, ...substation_node, n_bus, loss_before_switch0);t2 = toc;time_consumption.tabu_o2c2(iter) = t2-t1;min_loss_o2c2 = min(record_o2c2_loss_dec(:,1));fprintf('case33_tabu: minimum loss obtained after ''two open and two close'': %.5f\n', ...min_loss_o2c2);
​min_loss_combine_two_o2c2 = 1e9;fprintf('case33_tabu: loss obtained after combine two ''two open and two close'': \n')for i = 1:length(loss_after_switch_combine_two_o2c2)temp = min(loss_after_switch_combine_two_o2c2{i});if temp %.5f \n', temp);endfprintf('case33_tabu: minimum loss obtained after combine two ''two open and two close'': %.5f \n', ...min_loss_combine_two_o2c2)  res_save{iter}.min_loss_o2c2 = min_loss_o2c2;res_save{iter}.min_loss_combine_two_o2c2 = min_loss_combine_two_o2c2;end
​res_save{iter}.yij_dec = yij_dec;res_save{iter}.Branch = Branch;res_save{iter}.lossi = lossi;    res_save{iter}.record_o1c1_loss_dec = record_o1c1_loss_dec;res_save{iter}.min_loss_o1c1 = min_loss_o1c1;res_save{iter}.min_loss_combine_two_o1c1 = min_loss_combine_two_o1c1;%     file_name = ['case33_yij_Branch_', num2str(idx_force_open(iter)), '.mat'];
%     save(file_name, 'yij_dec', 'Branch', 'lossi');file_name = ['id1_case33_yij_Branch', '.mat'];save(file_name, 'res_save', 'branch_idx_focused', 'Branch_loss_record', ...'time_consumption');   end
file_name = ['id1_case33_yij_Branch', '.mat'];
save(file_name, 'res_save', 'branch_idx_focused', 'Branch_loss_record', ...'time_consumption');
​
% find_all_losses(Branch_loss_record);
​
fprintf('case33_tabu: losses obtained after applying tabu strategy: \n') % 0.28343  zjp 2018-1-18
fprintf('%.5f \n', loss_tabu)
fprintf('----- min: %.5f -----\n', min(loss_tabu))
​
min_loss = 1e9;
for i = 1:length(res_save)if min_loss>res_save{i}.min_loss_o1c1 min_loss = res_save{i}.min_loss_o1c1 ;endif min_loss>res_save{i}.min_loss_combine_two_o1c1 min_loss = res_save{i}.min_loss_combine_two_o1c1 ;end
end  
min_loss_o1c1 = min_loss
​
if flag_2o2c == 1min_loss = 1e9;for i = 1:length(res_save)if min_loss>res_save{i}.min_loss_o2c2 min_loss = res_save{i}.min_loss_o2c2 ;endif min_loss>res_save{i}.min_loss_combine_two_o2c2 min_loss = res_save{i}.min_loss_combine_two_o2c2 ;endend  min_loss_o2c2 = min_loss
end
​

部分模型级文献结果

4 下载链接

相关文章:

【免费】基于SOE算法的多时段随机配电网重构方法

1 主要内容 该程序是完全复现《Switch Opening and Exchange Method for Stochastic Distribution Network Reconfiguration》,也是一个开源代码,网上有些人卖的还挺贵,本次免费分享给大家,代码主要做的是一个通过配电网重构获取…...

Swift面向对象编程

类的定义与实例化: Swift中定义一个类使用class关键字,类的属性和方法都写在大括号内。示例代码如下: class MyClass {var property1: Intvar property2: Stringinit(property1: Int, property2: String) {self.property1 property1self.pr…...

IEDA 的各种常用插件汇总

目录 IEDA 的各种常用插件汇总1、 Alibaba Java Coding Guidelines2、Translation3、Rainbow Brackets4、MyBatisX5、MyBatis Log Free6、Lombok7、Gitee IEDA 的各种常用插件汇总 1、 Alibaba Java Coding Guidelines 作用:阿里巴巴代码规范检查插件,…...

浅谈C语言中异或运算符的10种妙用

目录 1、前言 2、基本准则定律 3、妙用归纳 4、总结 1、前言 C语言中异或运算符^作为一个基本的逻辑运算符,相信大家都知道其概念:通过对两个相同长度的二进制数进行逐位比较,若对应位的值不同,结果为 1, 否则结果为 0。 但是…...

Canal--->准备MySql主数据库---->安装canal

一、安装主数据库 1.在服务器新建文件夹 mysql/data,新建文件 mysql/conf.d/my.cnf 其中my.cnf 内容如下 [mysqld] log_timestampsSYSTEM default-time-zone8:00 server-id1 log-binmysql-bin binlog-do-db mall # 要监听的库 binlog_formatROW2.启动数据库 do…...

vs配置opencv运行时“发生生成错误,是否继续并运行上次的成功生成”BUG解决办法

vs“发生生成错误,是否继续并运行上次的成功生成” 新手在用vs配置opencv时遇到这个错误时,容易无从下手解决。博主亲身经历很有可能是release/debug模式和配置文件不符的问题。 在配置【链接器】→【输入】→【附加依赖项】环节,编辑查看选择…...

Dryad Girl Fawnia

一个可爱的Dryad Girl Fawnia的三维模型。她有ARKit混合形状,人形装备,多种颜色可供选择。她将是一个完美的角色,幻想或装扮游戏。 🔥 Dryad Girl | Fawnia 一个可爱的Dryad Girl Fawnia的三维模型。她有ARKit混合形状,人形装备,多种颜色可供选择。她将是一个完美的角色…...

内存相关知识(新)

基本概念 内存层次结构:内存层次结构是一种层次化的存储设备结构,它包括寄存器、缓存、主存和辅助存储器。每一层次的存储设备都有不同的速度、容量和成本。 内存单元:内存被划分为一系列连续的内存单元,每个单元都有一个唯一的地…...

C++从入门到精通——static成员

static成员 前言一、static成员概念例题 二、 static成员的特性特性例题静态成员函数可以调用非静态成员函数吗非静态成员函数可以调用类的静态成员函数吗 前言 一、static成员 概念 声明为static的类成员称为类的静态成员,用static修饰的成员变量,称之…...

【K8S:初始化】:执行kubeadm显示:connection refused.

文章目录 [root10 kubernetes]# kubeadm init --kubernetes-versionv1.23.0 --image-repositoryregistry.aliyuncs.com/google_containers --apiserver-advertise-address192.168.56.104 [init] Using Kubernetes version: v1.23.0 [preflight] Running pre-flight checks [pre…...

msvcp140_1.dll是什么?找不到msvcp140_1.dll丢失解决方法

msvcp140_1.dll 文件是一个与 Microsoft Visual C 2015 Redistributable 相关的动态链接库(DLL),它在 Windows 系统中扮演着重要角色,尤其对于那些依赖于 Visual C 运行时环境的应用程序和游戏来说。以下是关于 msvcp140_1.dll 文…...

【Java探索之旅】掌握数组操作,轻松应对编程挑战

🎥 屿小夏 : 个人主页 🔥个人专栏 : Java编程秘籍 🌄 莫道桑榆晚,为霞尚满天! 文章目录 📑前言一、数组巩固练习1.1 数组转字符串1.2 数组拷贝1.3 求数组中的平均值1.4 查找数组中指…...

深入理解同步与异步编程及协程管理在Python中的应用

文章目录 1. 同步与异步函数的对比1.1 同步函数1.2 异步函数1.3 对比 2. 管理多个协程与异常处理2.1 并发执行多个协程2.2 错误处理2.3 任务取消 本文将探索Python中同步与异步编程的基本概念及其区别。还会详细介绍如何使用asyncio库来有效管理协程,包括任务的创建…...

Win10本地更新无法升级win11 的0x80080005解决方法

Win10本地更新无法升级win11 Visual Studio 2022 运行项目时,本文提供了错误“指定的程序需要较新版本的 Windows”的解决方法。 更新时提示:0x80080005 解决方法 1、下载Windows11InstallationAssistant.exe 【免费】Windows11InstallationAssista…...

互联网轻量级框架整合之MyBatis核心组件

在看本篇内容之前,最好先理解一下Hibernate和MyBatis的本质区别,这篇Hibernate和MyBatis使用对比实例做了实际的代码级对比,而MyBatis作为更适合互联网产品的持久层首选必定有必然的原因 MyBatis核心组件 MyBatis能够成为数据持久层首选框&a…...

springboot websocket 持续打印 pod 日志

springboot 整合 websocket 和 连接 k8s 集群的方式参考历史 Java 专栏文章 修改前端页面 <!DOCTYPE html> <html><head><meta charset"utf-8"><title>Java后端WebSocket的Tomcat实现</title><script type"text/javasc…...

C代码编译过程与进程内存分布

C代码编译过程 在这篇文章中&#xff0c;我们将探讨C语言代码的编译流程以及进程在运行时的内存布局。编译过程通常包括几个关键步骤&#xff1a;预处理、编译、汇编和链接。 预处理阶段主要是处理源代码文件中的宏定义、头文件包含和条件编译指令。在此阶段&#xff0c;编译…...

Windows 部署ChatGLM3大语言模型

一、环境要求 硬件 内存&#xff1a;> 16GB 显存: > 13GB&#xff08;4080 16GB&#xff09; 硬盘&#xff1a;60G 软件 python 版本推荐3.10 - 3.11 transformers 库版本推荐为 4.36.2 torch 推荐使用 2.0 及以上的版本&#xff0c;以获得最佳的推理性能 二、部…...

JS相关八股之什么是事件循环

在JavaScript中&#xff0c;“事件循环”&#xff08;Event Loop&#xff09;是一个非常重要的概念&#xff0c;它是指JavaScript引擎如何在单线程中处理异步操作的机制。单线程意味着在任意时刻&#xff0c;JavaScript代码只能执行一个任务。 一.事件循环的工作流程大致如下&…...

SpringCloud集成Skywalking链路追踪和日志收集

1. 下载Agents https://archive.apache.org/dist/skywalking/java-agent/9.0.0/apache-skywalking-java-agent-9.0.0.tgz 2. 上传到服务器解压 在Spring Cloud项目中&#xff0c;每部署一个服务时&#xff0c;就拷贝一份skywalking的agent文件到该服务器上并解压。不管是部署…...

iOS 26 携众系统重磅更新,但“苹果智能”仍与国行无缘

美国西海岸的夏天&#xff0c;再次被苹果点燃。一年一度的全球开发者大会 WWDC25 如期而至&#xff0c;这不仅是开发者的盛宴&#xff0c;更是全球数亿苹果用户翘首以盼的科技春晚。今年&#xff0c;苹果依旧为我们带来了全家桶式的系统更新&#xff0c;包括 iOS 26、iPadOS 26…...

VB.net复制Ntag213卡写入UID

本示例使用的发卡器&#xff1a;https://item.taobao.com/item.htm?ftt&id615391857885 一、读取旧Ntag卡的UID和数据 Private Sub Button15_Click(sender As Object, e As EventArgs) Handles Button15.Click轻松读卡技术支持:网站:Dim i, j As IntegerDim cardidhex, …...

c++ 面试题(1)-----深度优先搜索(DFS)实现

操作系统&#xff1a;ubuntu22.04 IDE:Visual Studio Code 编程语言&#xff1a;C11 题目描述 地上有一个 m 行 n 列的方格&#xff0c;从坐标 [0,0] 起始。一个机器人可以从某一格移动到上下左右四个格子&#xff0c;但不能进入行坐标和列坐标的数位之和大于 k 的格子。 例…...

家政维修平台实战20:权限设计

目录 1 获取工人信息2 搭建工人入口3 权限判断总结 目前我们已经搭建好了基础的用户体系&#xff0c;主要是分成几个表&#xff0c;用户表我们是记录用户的基础信息&#xff0c;包括手机、昵称、头像。而工人和员工各有各的表。那么就有一个问题&#xff0c;不同的角色&#xf…...

Python实现prophet 理论及参数优化

文章目录 Prophet理论及模型参数介绍Python代码完整实现prophet 添加外部数据进行模型优化 之前初步学习prophet的时候&#xff0c;写过一篇简单实现&#xff0c;后期随着对该模型的深入研究&#xff0c;本次记录涉及到prophet 的公式以及参数调优&#xff0c;从公式可以更直观…...

Nginx server_name 配置说明

Nginx 是一个高性能的反向代理和负载均衡服务器&#xff0c;其核心配置之一是 server 块中的 server_name 指令。server_name 决定了 Nginx 如何根据客户端请求的 Host 头匹配对应的虚拟主机&#xff08;Virtual Host&#xff09;。 1. 简介 Nginx 使用 server_name 指令来确定…...

VTK如何让部分单位不可见

最近遇到一个需求&#xff0c;需要让一个vtkDataSet中的部分单元不可见&#xff0c;查阅了一些资料大概有以下几种方式 1.通过颜色映射表来进行&#xff0c;是最正规的做法 vtkNew<vtkLookupTable> lut; //值为0不显示&#xff0c;主要是最后一个参数&#xff0c;透明度…...

现代密码学 | 椭圆曲线密码学—附py代码

Elliptic Curve Cryptography 椭圆曲线密码学&#xff08;ECC&#xff09;是一种基于有限域上椭圆曲线数学特性的公钥加密技术。其核心原理涉及椭圆曲线的代数性质、离散对数问题以及有限域上的运算。 椭圆曲线密码学是多种数字签名算法的基础&#xff0c;例如椭圆曲线数字签…...

k8s业务程序联调工具-KtConnect

概述 原理 工具作用是建立了一个从本地到集群的单向VPN&#xff0c;根据VPN原理&#xff0c;打通两个内网必然需要借助一个公共中继节点&#xff0c;ktconnect工具巧妙的利用k8s原生的portforward能力&#xff0c;简化了建立连接的过程&#xff0c;apiserver间接起到了中继节…...

MySQL用户和授权

开放MySQL白名单 可以通过iptables-save命令确认对应客户端ip是否可以访问MySQL服务&#xff1a; test: # iptables-save | grep 3306 -A mp_srv_whitelist -s 172.16.14.102/32 -p tcp -m tcp --dport 3306 -j ACCEPT -A mp_srv_whitelist -s 172.16.4.16/32 -p tcp -m tcp -…...