当前位置: 首页 > news >正文

【免费】基于SOE算法的多时段随机配电网重构方法

主要内容

该程序是完全复现《Switch Opening and Exchange Method for Stochastic Distribution Network Reconfiguration》,也是一个开源代码,网上有些人卖的还挺贵,本次免费分享给大家,代码主要做的是一个通过配电网重构获取最优网络拓扑的问题,从而有效降低网损,提高经济效益,同时考虑了光伏和负荷的随机性,构建了多时段随机配电网重构模型,考虑到大型网络中计算较为耗时,采用一种基于开断和交换的SOE方法,已获得良好的径向拓扑,采用IEEE多个标准算例进行了测试,更加创新,而且求解的效果更好,结果和论文基本是一致,代码质量非常高,但是子程序比较多,适合有编程经验的同学学习!

部分程序

% core programme in decrese_reconfig_33.m   already obtain optimal solution, no need to execute tabu
clear all, clc, close all
addpath('./code')
%% basic setting
tic
fprintf('decrease_reconfig_33_tabu.m \n')
warning('off')
addpath(pathdef)
mpopt = mpoption;
mpopt.out.all = 0; % do not print anything
mpopt.verbose = 0;
version_LODF = 0 % 1: use decrease_reconfig_algo_LODF.m% 0: use decrease_reconfig_algo.m
​
candi_brch_bus = []; % candidate branch i added to bus j
% mpc0 = case33;
casei=4
d33zhu_v2
substation_node = 1;        n_bus = 33;
​
n1 = 3
n2 = 5
n1_down_substation = n1+1;    n2_up_ending = n2;
​
Branch0 = Branch;
brch_idx_in_loop0 = unique(brch_idx_in_loop(:));
​
%% original network's power flow (not radial)
% show_biograph(Branch, Bus)
from_to = show_biograph_not_sorted(Branch, substation_node, 0); 
mpc = generate_mpc(Bus, Branch, n_bus);
res_orig = runpf(mpc, mpopt);
losses = get_losses(res_orig.baseMVA, res_orig.bus, res_orig.branch);
loss0 = sum(real(losses));
fprintf('case33_tabu: original loop network''s loss is %.5f \n\n', loss0)
​
% for each branch in a loop, 
% if open that branch does not cause isolation, check the two ending buses 
% of that branch for connectivity, realized by shortestpath or conncomp
% calculate the lowest loss increase, print out the sorted loss increase 
% open the branch with lowest loss increase
% stop criterion: number of buses - number of branches = 1
​
%% ------------------------ Core algorithm ------------------------%%
ff0 = Branch(:, 1);   ff = ff0;
tt0 = Branch(:, 2);   tt = tt0;
t1 = toc;
if version_LODF[Branch] = decrease_reconfig_algo_LODF(Bus, Branch, brch_idx_in_loop, ...ff0, tt0, substation_node, n_bus, loss0); %%%  core algorithm
else[Branch] = decrease_reconfig_algo(Bus, Branch, brch_idx_in_loop, ff0, tt0, ...substation_node, n_bus, loss0); %%%  core algorithm
end
t2 = toc;
time_consumption.core = t2 - t1
​
% output of core algorithm
show_biograph = 0;
from_to = show_biograph_not_sorted(Branch(:, [1 2]), substation_node, ...0);
from_to0 = from_to;
mpc = generate_mpc(Bus, Branch, n_bus);
res_pf_dec = runpf(mpc, mpopt);
losses = get_losses(res_pf_dec.baseMVA, res_pf_dec.bus, res_pf_dec.branch);
loss0_dec = sum(real(losses));  % 
fprintf('case33_tabu: radial network obtained by my core algorithm''s loss is %.5f \n\n', loss0_dec)
​
Branch_loss_record = [];
% record Branch and loss
Branch_loss_record.core.Branch = Branch;
Branch_loss_record.core.loss = loss0_dec;
​
%% prepare force open branches for tabu: branch_idx_focused
[branch_idx_focused] = get_branch_idx_focused_for_tabu( ...from_to, Branch0, Branch, substation_node, brch_idx_in_loop0, n_bus, ...n1_down_substation, n2_up_ending);
​
%% ------------------------ Tabu algorithm ------------------------%%
% run the core program for each upstream branch connected to the idx_force_open
% idx_considered = [35 69]
% for iter = idx_considered
for iter = 1:length(branch_idx_focused)fprintf('iter=%d/%d\n', iter, length(branch_idx_focused));Branch = Branch0;Branch(branch_idx_focused(iter), :) = [];ff0 = Branch(:, 1);   ff = ff0;tt0 = Branch(:, 2);   tt = tt0;brch_idx_in_loop = brch_idx_in_loop0;idx_tmp = find(brch_idx_in_loop == branch_idx_focused(iter));if isempty(idx_tmp)elsebrch_idx_in_loop(idx_tmp) = [];brch_idx_in_loop(idx_tmp:end) = brch_idx_in_loop(idx_tmp:end)-1;end
​t1 = toc;%%------------------- core algorithm in Tabu loop--------------------%%    if version_LODF[Branch] = decrease_reconfig_algo_LODF(Bus, Branch, brch_idx_in_loop, ...ff0, tt0, substation_node, n_bus, loss0); %%%  core algorithmelse[Branch] = decrease_reconfig_algo(Bus, Branch, brch_idx_in_loop, ff0, tt0, ...substation_node, n_bus, loss0); %%%  core algorithmendt2 = toc;    time_consumption.tabu(iter) = t2-t1;
​from_to = show_biograph_not_sorted(Branch(:, [1 2]), substation_node, ...show_biograph); %%% show figure, take timempc = generate_mpc(Bus, Branch, n_bus);t1 = toc;res_pf = runpf(mpc, mpopt);t2 = toc;    losses = get_losses(res_pf.baseMVA, res_pf.bus, res_pf.branch);lossi = sum(real(losses)) % loss = 0.5364loss_tabu(iter,1) = lossi;yij_dec = generate_yij_from_Branch(Branch, Branch0);
​% record Branch and lossBranch_loss_record.tabu(iter,1).Branch = Branch; Branch_loss_record.tabu(iter,1).loss = lossi;[PQ, PV, REF, NONE, BUS_I, BUS_TYPE, PD, QD, GS, BS, BUS_AREA, VM, ...VA, BASE_KV, ZONE, VMAX, VMIN, LAM_P, LAM_Q, MU_VMAX, MU_VMIN] = idx_bus;
%     Vm = res_pf.bus(:, VM)';
%     Va = res_pf.bus(:, VA)';
%     ending_bus = find_ending_node(Branch, substation_node);
%     [ending_bus'; Vm(ending_bus)]; %% ---------------------one open and one close---------------------%%   % prepare nodes_focused for one_open_one_closet1 = toc;[nodes_focused] = get_nodes_focused_o1c1( ...from_to, Branch, Branch0, substation_node, brch_idx_in_loop, ...n1_down_substation, n2_up_ending);
​loss_before_switch0 = lossi;[record_o1c1_loss_dec, loss_after_switch_combine_two_o1c1, Branch_loss] = ...one_open_one_close(nodes_focused, Bus, Branch0, Branch, from_to, ...substation_node, n_bus, loss_before_switch0);t2 = toc;time_consumption.tabu_o1c1(iter) = t2-t1;
​% record Branch and lossBranch_loss_record.tabu_o1c1_dec{iter}.Branch = Branch_loss.Branch_o1c1_dec; 
%     Branch_loss_record.tabu_o1c1_dec(iter,1).Branch = Branch_loss.Branch_o1c1_dec; Branch_loss_record.tabu_o1c1_dec{iter}.loss = Branch_loss.loss_o1c1_dec; Branch_loss_record.tabu_combine_2_o1c1_dec{iter}.Branch = ...Branch_loss.Branch_after_switch_combine_two_o1c1; Branch_loss_record.tabu_combine_2_o1c1_dec{iter}.loss = ...Branch_loss.loss_after_switch_combine_two_o1c1;  
​min_loss_o1c1 = min(record_o1c1_loss_dec(:,1));fprintf('case33_tabu: minimum loss obtained after ''one open and one close'': %.5f\n', ...min_loss_o1c1);
​min_loss_combine_two_o1c1 = 1e9;fprintf('case33_tabu: loss obtained after combine two ''one open and one close'': \n')for i = 1:length(loss_after_switch_combine_two_o1c1)temp = min(loss_after_switch_combine_two_o1c1{i});if temp %.5f \n', temp);end    fprintf('case33_tabu: minimum loss obtained after combine two ''one open and one close'': %.5f \n', ...min_loss_combine_two_o1c1)  %% ---------------------two open and two close---------------------%%flag_2o2c = 0if flag_2o2c == 1t1 = toc;loss_before_switch0 = lossi;[record_o2c2_loss_dec, loss_after_switch_combine_two_o2c2] = ...two_open_two_close(nodes_focused, Bus, Branch0, Branch, from_to, ...substation_node, n_bus, loss_before_switch0);t2 = toc;time_consumption.tabu_o2c2(iter) = t2-t1;min_loss_o2c2 = min(record_o2c2_loss_dec(:,1));fprintf('case33_tabu: minimum loss obtained after ''two open and two close'': %.5f\n', ...min_loss_o2c2);
​min_loss_combine_two_o2c2 = 1e9;fprintf('case33_tabu: loss obtained after combine two ''two open and two close'': \n')for i = 1:length(loss_after_switch_combine_two_o2c2)temp = min(loss_after_switch_combine_two_o2c2{i});if temp %.5f \n', temp);endfprintf('case33_tabu: minimum loss obtained after combine two ''two open and two close'': %.5f \n', ...min_loss_combine_two_o2c2)  res_save{iter}.min_loss_o2c2 = min_loss_o2c2;res_save{iter}.min_loss_combine_two_o2c2 = min_loss_combine_two_o2c2;end
​res_save{iter}.yij_dec = yij_dec;res_save{iter}.Branch = Branch;res_save{iter}.lossi = lossi;    res_save{iter}.record_o1c1_loss_dec = record_o1c1_loss_dec;res_save{iter}.min_loss_o1c1 = min_loss_o1c1;res_save{iter}.min_loss_combine_two_o1c1 = min_loss_combine_two_o1c1;%     file_name = ['case33_yij_Branch_', num2str(idx_force_open(iter)), '.mat'];
%     save(file_name, 'yij_dec', 'Branch', 'lossi');file_name = ['id1_case33_yij_Branch', '.mat'];save(file_name, 'res_save', 'branch_idx_focused', 'Branch_loss_record', ...'time_consumption');   end
file_name = ['id1_case33_yij_Branch', '.mat'];
save(file_name, 'res_save', 'branch_idx_focused', 'Branch_loss_record', ...'time_consumption');
​
% find_all_losses(Branch_loss_record);
​
fprintf('case33_tabu: losses obtained after applying tabu strategy: \n') % 0.28343  zjp 2018-1-18
fprintf('%.5f \n', loss_tabu)
fprintf('----- min: %.5f -----\n', min(loss_tabu))
​
min_loss = 1e9;
for i = 1:length(res_save)if min_loss>res_save{i}.min_loss_o1c1 min_loss = res_save{i}.min_loss_o1c1 ;endif min_loss>res_save{i}.min_loss_combine_two_o1c1 min_loss = res_save{i}.min_loss_combine_two_o1c1 ;end
end  
min_loss_o1c1 = min_loss
​
if flag_2o2c == 1min_loss = 1e9;for i = 1:length(res_save)if min_loss>res_save{i}.min_loss_o2c2 min_loss = res_save{i}.min_loss_o2c2 ;endif min_loss>res_save{i}.min_loss_combine_two_o2c2 min_loss = res_save{i}.min_loss_combine_two_o2c2 ;endend  min_loss_o2c2 = min_loss
end
​

部分模型级文献结果

4 下载链接

相关文章:

【免费】基于SOE算法的多时段随机配电网重构方法

1 主要内容 该程序是完全复现《Switch Opening and Exchange Method for Stochastic Distribution Network Reconfiguration》,也是一个开源代码,网上有些人卖的还挺贵,本次免费分享给大家,代码主要做的是一个通过配电网重构获取…...

Swift面向对象编程

类的定义与实例化: Swift中定义一个类使用class关键字,类的属性和方法都写在大括号内。示例代码如下: class MyClass {var property1: Intvar property2: Stringinit(property1: Int, property2: String) {self.property1 property1self.pr…...

IEDA 的各种常用插件汇总

目录 IEDA 的各种常用插件汇总1、 Alibaba Java Coding Guidelines2、Translation3、Rainbow Brackets4、MyBatisX5、MyBatis Log Free6、Lombok7、Gitee IEDA 的各种常用插件汇总 1、 Alibaba Java Coding Guidelines 作用:阿里巴巴代码规范检查插件,…...

浅谈C语言中异或运算符的10种妙用

目录 1、前言 2、基本准则定律 3、妙用归纳 4、总结 1、前言 C语言中异或运算符^作为一个基本的逻辑运算符,相信大家都知道其概念:通过对两个相同长度的二进制数进行逐位比较,若对应位的值不同,结果为 1, 否则结果为 0。 但是…...

Canal--->准备MySql主数据库---->安装canal

一、安装主数据库 1.在服务器新建文件夹 mysql/data,新建文件 mysql/conf.d/my.cnf 其中my.cnf 内容如下 [mysqld] log_timestampsSYSTEM default-time-zone8:00 server-id1 log-binmysql-bin binlog-do-db mall # 要监听的库 binlog_formatROW2.启动数据库 do…...

vs配置opencv运行时“发生生成错误,是否继续并运行上次的成功生成”BUG解决办法

vs“发生生成错误,是否继续并运行上次的成功生成” 新手在用vs配置opencv时遇到这个错误时,容易无从下手解决。博主亲身经历很有可能是release/debug模式和配置文件不符的问题。 在配置【链接器】→【输入】→【附加依赖项】环节,编辑查看选择…...

Dryad Girl Fawnia

一个可爱的Dryad Girl Fawnia的三维模型。她有ARKit混合形状,人形装备,多种颜色可供选择。她将是一个完美的角色,幻想或装扮游戏。 🔥 Dryad Girl | Fawnia 一个可爱的Dryad Girl Fawnia的三维模型。她有ARKit混合形状,人形装备,多种颜色可供选择。她将是一个完美的角色…...

内存相关知识(新)

基本概念 内存层次结构:内存层次结构是一种层次化的存储设备结构,它包括寄存器、缓存、主存和辅助存储器。每一层次的存储设备都有不同的速度、容量和成本。 内存单元:内存被划分为一系列连续的内存单元,每个单元都有一个唯一的地…...

C++从入门到精通——static成员

static成员 前言一、static成员概念例题 二、 static成员的特性特性例题静态成员函数可以调用非静态成员函数吗非静态成员函数可以调用类的静态成员函数吗 前言 一、static成员 概念 声明为static的类成员称为类的静态成员,用static修饰的成员变量,称之…...

【K8S:初始化】:执行kubeadm显示:connection refused.

文章目录 [root10 kubernetes]# kubeadm init --kubernetes-versionv1.23.0 --image-repositoryregistry.aliyuncs.com/google_containers --apiserver-advertise-address192.168.56.104 [init] Using Kubernetes version: v1.23.0 [preflight] Running pre-flight checks [pre…...

msvcp140_1.dll是什么?找不到msvcp140_1.dll丢失解决方法

msvcp140_1.dll 文件是一个与 Microsoft Visual C 2015 Redistributable 相关的动态链接库(DLL),它在 Windows 系统中扮演着重要角色,尤其对于那些依赖于 Visual C 运行时环境的应用程序和游戏来说。以下是关于 msvcp140_1.dll 文…...

【Java探索之旅】掌握数组操作,轻松应对编程挑战

🎥 屿小夏 : 个人主页 🔥个人专栏 : Java编程秘籍 🌄 莫道桑榆晚,为霞尚满天! 文章目录 📑前言一、数组巩固练习1.1 数组转字符串1.2 数组拷贝1.3 求数组中的平均值1.4 查找数组中指…...

深入理解同步与异步编程及协程管理在Python中的应用

文章目录 1. 同步与异步函数的对比1.1 同步函数1.2 异步函数1.3 对比 2. 管理多个协程与异常处理2.1 并发执行多个协程2.2 错误处理2.3 任务取消 本文将探索Python中同步与异步编程的基本概念及其区别。还会详细介绍如何使用asyncio库来有效管理协程,包括任务的创建…...

Win10本地更新无法升级win11 的0x80080005解决方法

Win10本地更新无法升级win11 Visual Studio 2022 运行项目时,本文提供了错误“指定的程序需要较新版本的 Windows”的解决方法。 更新时提示:0x80080005 解决方法 1、下载Windows11InstallationAssistant.exe 【免费】Windows11InstallationAssista…...

互联网轻量级框架整合之MyBatis核心组件

在看本篇内容之前,最好先理解一下Hibernate和MyBatis的本质区别,这篇Hibernate和MyBatis使用对比实例做了实际的代码级对比,而MyBatis作为更适合互联网产品的持久层首选必定有必然的原因 MyBatis核心组件 MyBatis能够成为数据持久层首选框&a…...

springboot websocket 持续打印 pod 日志

springboot 整合 websocket 和 连接 k8s 集群的方式参考历史 Java 专栏文章 修改前端页面 <!DOCTYPE html> <html><head><meta charset"utf-8"><title>Java后端WebSocket的Tomcat实现</title><script type"text/javasc…...

C代码编译过程与进程内存分布

C代码编译过程 在这篇文章中&#xff0c;我们将探讨C语言代码的编译流程以及进程在运行时的内存布局。编译过程通常包括几个关键步骤&#xff1a;预处理、编译、汇编和链接。 预处理阶段主要是处理源代码文件中的宏定义、头文件包含和条件编译指令。在此阶段&#xff0c;编译…...

Windows 部署ChatGLM3大语言模型

一、环境要求 硬件 内存&#xff1a;> 16GB 显存: > 13GB&#xff08;4080 16GB&#xff09; 硬盘&#xff1a;60G 软件 python 版本推荐3.10 - 3.11 transformers 库版本推荐为 4.36.2 torch 推荐使用 2.0 及以上的版本&#xff0c;以获得最佳的推理性能 二、部…...

JS相关八股之什么是事件循环

在JavaScript中&#xff0c;“事件循环”&#xff08;Event Loop&#xff09;是一个非常重要的概念&#xff0c;它是指JavaScript引擎如何在单线程中处理异步操作的机制。单线程意味着在任意时刻&#xff0c;JavaScript代码只能执行一个任务。 一.事件循环的工作流程大致如下&…...

SpringCloud集成Skywalking链路追踪和日志收集

1. 下载Agents https://archive.apache.org/dist/skywalking/java-agent/9.0.0/apache-skywalking-java-agent-9.0.0.tgz 2. 上传到服务器解压 在Spring Cloud项目中&#xff0c;每部署一个服务时&#xff0c;就拷贝一份skywalking的agent文件到该服务器上并解压。不管是部署…...

(LeetCode 每日一题) 3442. 奇偶频次间的最大差值 I (哈希、字符串)

题目&#xff1a;3442. 奇偶频次间的最大差值 I 思路 &#xff1a;哈希&#xff0c;时间复杂度0(n)。 用哈希表来记录每个字符串中字符的分布情况&#xff0c;哈希表这里用数组即可实现。 C版本&#xff1a; class Solution { public:int maxDifference(string s) {int a[26]…...

基于大模型的 UI 自动化系统

基于大模型的 UI 自动化系统 下面是一个完整的 Python 系统,利用大模型实现智能 UI 自动化,结合计算机视觉和自然语言处理技术,实现"看屏操作"的能力。 系统架构设计 #mermaid-svg-2gn2GRvh5WCP2ktF {font-family:"trebuchet ms",verdana,arial,sans-…...

基于当前项目通过npm包形式暴露公共组件

1.package.sjon文件配置 其中xh-flowable就是暴露出去的npm包名 2.创建tpyes文件夹&#xff0c;并新增内容 3.创建package文件夹...

spring:实例工厂方法获取bean

spring处理使用静态工厂方法获取bean实例&#xff0c;也可以通过实例工厂方法获取bean实例。 实例工厂方法步骤如下&#xff1a; 定义实例工厂类&#xff08;Java代码&#xff09;&#xff0c;定义实例工厂&#xff08;xml&#xff09;&#xff0c;定义调用实例工厂&#xff…...

在Ubuntu中设置开机自动运行(sudo)指令的指南

在Ubuntu系统中&#xff0c;有时需要在系统启动时自动执行某些命令&#xff0c;特别是需要 sudo权限的指令。为了实现这一功能&#xff0c;可以使用多种方法&#xff0c;包括编写Systemd服务、配置 rc.local文件或使用 cron任务计划。本文将详细介绍这些方法&#xff0c;并提供…...

基于Docker Compose部署Java微服务项目

一. 创建根项目 根项目&#xff08;父项目&#xff09;主要用于依赖管理 一些需要注意的点&#xff1a; 打包方式需要为 pom<modules>里需要注册子模块不要引入maven的打包插件&#xff0c;否则打包时会出问题 <?xml version"1.0" encoding"UTF-8…...

SpringTask-03.入门案例

一.入门案例 启动类&#xff1a; package com.sky;import lombok.extern.slf4j.Slf4j; import org.springframework.boot.SpringApplication; import org.springframework.boot.autoconfigure.SpringBootApplication; import org.springframework.cache.annotation.EnableCach…...

ArcGIS Pro制作水平横向图例+多级标注

今天介绍下载ArcGIS Pro中如何设置水平横向图例。 之前我们介绍了ArcGIS的横向图例制作&#xff1a;ArcGIS横向、多列图例、顺序重排、符号居中、批量更改图例符号等等&#xff08;ArcGIS出图图例8大技巧&#xff09;&#xff0c;那这次我们看看ArcGIS Pro如何更加快捷的操作。…...

网络编程(UDP编程)

思维导图 UDP基础编程&#xff08;单播&#xff09; 1.流程图 服务器&#xff1a;短信的接收方 创建套接字 (socket)-----------------------------------------》有手机指定网络信息-----------------------------------------------》有号码绑定套接字 (bind)--------------…...

AGain DB和倍数增益的关系

我在设置一款索尼CMOS芯片时&#xff0c;Again增益0db变化为6DB&#xff0c;画面的变化只有2倍DN的增益&#xff0c;比如10变为20。 这与dB和线性增益的关系以及传感器处理流程有关。以下是具体原因分析&#xff1a; 1. dB与线性增益的换算关系 6dB对应的理论线性增益应为&…...