OpenCV如何在图像中寻找轮廓(60)
返回:OpenCV系列文章目录(持续更新中......)
上一篇:OpenCV如何模板匹配(59)
下一篇 :OpenCV检测凸包(61)

目标
在本教程中,您将学习如何:
- 使用 OpenCV 函数 cv::findContours
- 使用 OpenCV 函数 cv::d rawContours
cv::findContours 和 cv::drawContours 都是 OpenCV 库中常用的图像处理函数,主要用于图像分割和轮廓绘制等操作。
cv::findContours 是一个用于在二值图像中查找轮廓的函数。它可以根据二值图像中的像素灰度值(0 或非零)来确定对象的轮廓,并返回一个由所有轮廓点构成的向量。此外,findContours 还可以实现轮廓间的层次结构分析,进一步提高轮廓分析的精度。
cv::drawContours 则可以根据给定的轮廓向量,对指定的图像进行轮廓绘制操作。它可以绘制轮廓内部、轮廓外边界、轮廓及其外边界,也可以指定边界的颜色和宽度。通过 drawContours 函数,我们可以将轮廓绘制在原图像中,以便后续的图像分析和处理。
因此,cv::findContours 和 cv::drawContours 通常会一起使用。通过 findContours 函数查找轮廓,然后利用 drawContours 函数在原图像中绘制轮廓,可以更好地实现图像分割和轮廓分析等操作。
C++代码
本教程代码如下所示。您也可以从这里下载
#include "opencv2/imgcodecs.hpp"
#include "opencv2/highgui.hpp"
#include "opencv2/imgproc.hpp"
#include <iostream>using namespace cv;
using namespace std;Mat src_gray;
int thresh = 100;
RNG rng(12345);void thresh_callback(int, void* );int main( int argc, char** argv )
{CommandLineParser parser( argc, argv, "{@input | HappyFish.jpg | input image}" );Mat src = imread( samples::findFile( parser.get<String>( "@input" ) ) );if( src.empty() ){cout << "Could not open or find the image!\n" << endl;cout << "Usage: " << argv[0] << " <Input image>" << endl;return -1;}cvtColor( src, src_gray, COLOR_BGR2GRAY );blur( src_gray, src_gray, Size(3,3) );const char* source_window = "Source";namedWindow( source_window );imshow( source_window, src );const int max_thresh = 255;createTrackbar( "Canny thresh:", source_window, &thresh, max_thresh, thresh_callback );thresh_callback( 0, 0 );waitKey();return 0;
}void thresh_callback(int, void* )
{Mat canny_output;Canny( src_gray, canny_output, thresh, thresh*2 );vector<vector<Point> > contours;vector<Vec4i> hierarchy;findContours( canny_output, contours, hierarchy, RETR_TREE, CHAIN_APPROX_SIMPLE );Mat drawing = Mat::zeros( canny_output.size(), CV_8UC3 );for( size_t i = 0; i< contours.size(); i++ ){Scalar color = Scalar( rng.uniform(0, 256), rng.uniform(0,256), rng.uniform(0,256) );drawContours( drawing, contours, (int)i, color, 2, LINE_8, hierarchy, 0 );}imshow( "Contours", drawing );
}
结果
在这里:


参考文献:
1、《Finding contours in your image》-----Ana Huamán
相关文章:
OpenCV如何在图像中寻找轮廓(60)
返回:OpenCV系列文章目录(持续更新中......) 上一篇:OpenCV如何模板匹配(59) 下一篇 :OpenCV检测凸包(61) 目标 在本教程中,您将学习如何: 使用 OpenCV 函数 cv::findContours使用 OpenCV 函数 cv::d rawContours …...
java 泛型题目讲解
泛型的知识点 泛型仅存在于编译时期,编译期间JAVA将会使用Object类型代替泛型类型,在运行时期不存在泛型;且所有泛型实例共享一个泛型类 public class Main{public static void main(String[] args){ArrayList<String> list1new Arra…...
pptx 文件版面分析-- python-pptx(python 文档解析提取)
安装 pip install python-pptx -i https://pypi.tuna.tsinghua.edu.cn/simple --ignore-installedpptx 解析代码实现 from pptx import Presentation file_name "rag_pptx/test1.pptx" # 打开.pptx文件 ppt Presentation(file_name) for slide in ppt.slides:#pr…...
http的basic 认证方式
写在前面 本文看下http的basic auth认证方式。 1:什么是basic auth认证 basic auth是一种http协议规范中的一种认证方式,即一种证明你就是你的方式。更进一步的它是一种规范,这种规范是这样子,如果是服务端使用了basic auth认证…...
【信息系统项目管理师练习题】信息系统治理
IT治理的核心是关注以下哪项内容? a) 人员培训和发展计划 b) IT定位和信息化建设与数字化转型的责权利划分 c) 业务流程的绩效管理 d) IT基础设施的优化利用 答案: b) IT定位和信息化建设与数字化转型的责权利划分 IT治理体系框架的组成部分包括以下哪些? a) IT战略目标、IT治…...
RabbitMQ之顺序消费
什么是顺序消费 例如:业务上产生者发送三条消息, 分别是对同一条数据的增加、修改、删除操作, 如果没有保证顺序消费,执行顺序可能变成删除、修改、增加,这就乱了。 如何保证顺序性 一般我们讨论如何保证消息的顺序性&…...
轻松上手的LangChain学习说明书
一、Langchain是什么? 如今各类AI模型层出不穷,百花齐放,大佬们开发的速度永远遥遥领先于学习者的学习速度。。为了解放生产力,不让应用层开发人员受限于各语言模型的生产部署中…LangChain横空出世界。 Langchain可以说是现阶段…...
【论文笔记】Training language models to follow instructions with human feedback A部分
Training language models to follow instructions with human feedback A 部分 回顾一下第一代 GPT-1 : 设计思路是 “海量无标记文本进行无监督预训练少量有标签文本有监督微调” 范式;模型架构是基于 Transformer 的叠加解码器(掩码自注意…...
嵌入式交叉编译:x265
下载 multicoreware / x265_git / Downloads — Bitbucket 解压编译 BUILD_DIR${HOME}/build_libs CROSS_NAMEaarch64-mix210-linuxcd build/aarch64-linuxmake cleancmake \-G "Unix Makefiles" \-DCMAKE_C_COMPILER${CROSS_NAME}-gcc \-DCMAKE_CXX_COMPILER${CR…...
一、Redis五种常用数据类型
Redis优势: 1、性能高—基于内存实现数据的存储 2、丰富的数据类型 5种常用,3种高级 3、原子—redis的所有单个操作都是原子性,即要么成功,要么失败。其多个操作也支持采用事务的方式实现原子性。 Redis特点: 1、支持…...
C语言动态内存管理malloc、calloc、realloc、free函数、内存泄漏、动态内存开辟的位置等的介绍
文章目录 前言一、为什么存在动态内存管理二、动态内存函数的介绍1. malloc函数2. 内存泄漏3. 动态内存开辟位置4. free函数5. calloc 函数6. realloc 函数7. realloc 传空指针 总结 前言 C语言动态内存管理malloc、calloc、realloc、free函数、内存泄漏、动态内存开辟的位置等…...
最近惊爆谷歌裁员
Python团队还没解散完,谷歌又对Flutter、Dart动手了。 什么原因呢,猜测啊。 谷歌裁员Python的具体原因可能是因为公司在进行技术栈的调整和优化。Python作为一种脚本语言,在某些情况下可能无法提供足够的性能或者扩展性,尤其是在…...
音频可视化:原生音频API为前端带来的全新可能!
音频API是一组提供给网页开发者的接口,允许他们直接在浏览器中处理音频内容。这些API使得在不依赖任何外部插件的情况下操作和控制音频成为可能。 Web Audio API 可以进行音频的播放、处理、合成以及分析等操作。借助于这些工具,开发者可以实现自定义的音…...
【中等】保研/考研408机试-动态规划1(01背包、完全背包、多重背包)
背包问题基本上都是模板题,重点:弄熟多重背包模板 dp[j]max(dp[j-v[i]]w[i],dp[j]) //核心思路代码(一维数组版) dp[i][j]max(dp[i-1][j], dp[i-1][j-v[i]]w[i])//二维数字版 一、 0-1背包 一般输入两个变量:体积&…...
[DEMO]给两个字符串取交集的词语
要求:2个英文字符串中,取相同的大于等于4个字母的词组 比如: 字符串1:" xingMeiLingabcdef WorldHello", 字符串2:"mnjqlup WorldLingLing xingMeiLingHello" 获取交接: [xingMeiLing…...
leetcode53-Maximum Subarray
题目 给你一个整数数组 nums ,请你找出一个具有最大和的连续子数组(子数组最少包含一个元素),返回其最大和。 子数组 是数组中的一个连续部分。 示例 1: 输入:nums [-2,1,-3,4,-1,2,1,-5,4] 输出…...
Python 基于 OpenCV 视觉图像处理实战 之 OpenCV 简单人脸检测/识别实战案例 之七 简单进行人脸检测并添加面具特效实现
Python 基于 OpenCV 视觉图像处理实战 之 OpenCV 简单人脸检测/识别实战案例 之七 简单进行人脸检测并添加面具特效实现 目录...
【go项目01_学习记录06】
学习记录 1 使用中间件1.1 测试一下1.2 push代码 2 URI 中的斜杆2.1 StrictSlash2.2 兼容 POST 请求 1 使用中间件 代码中存在重复率很高的代码 w.Header().Set("Content-Type", "text/html; charsetutf-8")统一对响应做处理的,我们可以使用中…...
Vue中Element的下载
打开vscode让项目在终端中打开 输入npm install element-ui2.15.3 然后进行下载 在node_modules中出现element-ui表示下载完成 然后在输入Vue.use(ElementUI); import Vue from vue import App from ./App.vue import router from ./router import ElementUI from element-ui…...
机器人项目相关
机器人项目相关 1. Nvidia 1.1 Jetson 1.1.1 初步安装Riva教程 llamaspeakJetson AGX Orin踩坑记录(1)安装Riva 参考知乎链接:https://zhuanlan.zhihu.com/p/670007305 1.1.2 NVIDIA Jetson AI Lab 借助 NVIDIA Jetson™ 将生成式 AI…...
脑机新手指南(八):OpenBCI_GUI:从环境搭建到数据可视化(下)
一、数据处理与分析实战 (一)实时滤波与参数调整 基础滤波操作 60Hz 工频滤波:勾选界面右侧 “60Hz” 复选框,可有效抑制电网干扰(适用于北美地区,欧洲用户可调整为 50Hz)。 平滑处理&…...
MongoDB学习和应用(高效的非关系型数据库)
一丶 MongoDB简介 对于社交类软件的功能,我们需要对它的功能特点进行分析: 数据量会随着用户数增大而增大读多写少价值较低非好友看不到其动态信息地理位置的查询… 针对以上特点进行分析各大存储工具: mysql:关系型数据库&am…...
(二)TensorRT-LLM | 模型导出(v0.20.0rc3)
0. 概述 上一节 对安装和使用有个基本介绍。根据这个 issue 的描述,后续 TensorRT-LLM 团队可能更专注于更新和维护 pytorch backend。但 tensorrt backend 作为先前一直开发的工作,其中包含了大量可以学习的地方。本文主要看看它导出模型的部分&#x…...
【Redis技术进阶之路】「原理分析系列开篇」分析客户端和服务端网络诵信交互实现(服务端执行命令请求的过程 - 初始化服务器)
服务端执行命令请求的过程 【专栏简介】【技术大纲】【专栏目标】【目标人群】1. Redis爱好者与社区成员2. 后端开发和系统架构师3. 计算机专业的本科生及研究生 初始化服务器1. 初始化服务器状态结构初始化RedisServer变量 2. 加载相关系统配置和用户配置参数定制化配置参数案…...
Robots.txt 文件
什么是robots.txt? robots.txt 是一个位于网站根目录下的文本文件(如:https://example.com/robots.txt),它用于指导网络爬虫(如搜索引擎的蜘蛛程序)如何抓取该网站的内容。这个文件遵循 Robots…...
WordPress插件:AI多语言写作与智能配图、免费AI模型、SEO文章生成
厌倦手动写WordPress文章?AI自动生成,效率提升10倍! 支持多语言、自动配图、定时发布,让内容创作更轻松! AI内容生成 → 不想每天写文章?AI一键生成高质量内容!多语言支持 → 跨境电商必备&am…...
AI编程--插件对比分析:CodeRider、GitHub Copilot及其他
AI编程插件对比分析:CodeRider、GitHub Copilot及其他 随着人工智能技术的快速发展,AI编程插件已成为提升开发者生产力的重要工具。CodeRider和GitHub Copilot作为市场上的领先者,分别以其独特的特性和生态系统吸引了大量开发者。本文将从功…...
使用Matplotlib创建炫酷的3D散点图:数据可视化的新维度
文章目录 基础实现代码代码解析进阶技巧1. 自定义点的大小和颜色2. 添加图例和样式美化3. 真实数据应用示例实用技巧与注意事项完整示例(带样式)应用场景在数据科学和可视化领域,三维图形能为我们提供更丰富的数据洞察。本文将手把手教你如何使用Python的Matplotlib库创建引…...
JS设计模式(4):观察者模式
JS设计模式(4):观察者模式 一、引入 在开发中,我们经常会遇到这样的场景:一个对象的状态变化需要自动通知其他对象,比如: 电商平台中,商品库存变化时需要通知所有订阅该商品的用户;新闻网站中࿰…...
深入理解Optional:处理空指针异常
1. 使用Optional处理可能为空的集合 在Java开发中,集合判空是一个常见但容易出错的场景。传统方式虽然可行,但存在一些潜在问题: // 传统判空方式 if (!CollectionUtils.isEmpty(userInfoList)) {for (UserInfo userInfo : userInfoList) {…...
