当前位置: 首页 > news >正文

Matlab实现FFT变换

Matlab实现FFT变换

文章目录

    • Matlab实现FFT变换
      • 原理
      • 实现
        • 手算验证
        • 简单fft变换和频谱
        • 求取功率谱
      • 结论

在信号处理中,快速傅里叶变换(FFT)是一种非常常见的频域分析方法。本文将介绍如何使用Matlab实现FFT变换,并通过Matlab代码演示实际输出结果。

原理

FFT是一种计算离散傅里叶变换(DFT)的快速算法。DFT将时域上的信号转换为频域上的信号,可以用以下公式表示:

Xk=∑n=0N−1xne−i2πkn/NX_k=\sum_{n=0}^{N-1}x_n e^{-i2\pi kn/N}Xk=n=0N1xnei2πkn/N

其中,xnx_nxn是时域上的信号序列,XkX_kXk是频域上的信号序列,kkk为频率编号(0≤k<N0\leq k < N0k<N),NNN为信号长度。

FFT算法通过分治策略将DFT算法的计算复杂度从O(N2)O(N^2)O(N2)降低到O(Nlog2N)O(Nlog_2N)O(Nlog2N),从而实现了在计算机上快速计算DFT的目的。

实现

手算验证

在这里,我们将给出一个简单的例子来说明如何使用Matlab进行FFT变换。我们首先生成一个简单的数组:

x = [1, 2, 3, 4, 5, 6, 7, 8];

接下来,我们使用Matlab内置的fft函数对这个数组进行FFT变换:

X = fft(x);

这个操作会返回一个和输入数组长度相同的复数数组。我们可以使用Matlab的disp函数打印出这个数组:

disp(X);

这个例子的输出结果如下:

   36.0000 + 0.0000i-4.0000 + 9.6569i-4.0000 + 4.0000i-4.0000 + 1.6569i-4.0000 + 0.0000i-4.0000 - 1.6569i-4.0000 - 4.0000i-4.0000 - 9.6569i

可以看到,输出结果是一个长度为8的复数数组。

为了验证FFT的正确性,我们可以手动计算这个输入数组的FFT结果,然后将结果与Matlab计算的结果进行比较。FFT算法的计算过程可以用以下公式表示:

Xk=∑n=0N−1xne−i2πkn/NX_k=\sum_{n=0}^{N-1}x_n e^{-i2\pi kn/N}Xk=n=0N1xnei2πkn/N

其中,xnx_nxn是时域上的信号序列,XkX_kXk是频域上的信号序列,kkk为频率编号(0≤k<N0\leq k < N0k<N),NNN为信号长度。

对于输入数组x=[1,2,3,4,5,6,7,8]x=[1,2,3,4,5,6,7,8]x=[1,2,3,4,5,6,7,8],我们有N=8N=8N=8。因此,X0X_0X0的计算公式为:

X0=∑n=07xne−i2π0n/8=36X_0 = \sum_{n=0}^{7}x_n e^{-i2\pi 0n/8}=36X0=n=07xnei2π0n/8=36

接下来,我们可以计算X1X_1X1

X1=∑n=07xne−i2π1n/8=−4+9.6569iX_1 = \sum_{n=0}^{7}x_n e^{-i2\pi 1n/8}=-4+9.6569iX1=n=07xnei2π1n/8=4+9.6569i

以此类推,我们可以计算出所有的XkX_kXk。最终结果应该与Matlab计算的结果一致。

简单fft变换和频谱

以下是一个简单的Matlab代码实现FFT变换:

% 生成测试信号
Fs = 1000;      % 采样频率
t = 0:1/Fs:1-1/Fs;   % 时间向量
x = 1*sin(2*pi*100*t); % 信号% 绘制信号图
subplot(2,1,1);
plot(t,x);
title('信号');
xlabel('时间 (s)');
ylabel('幅度');% 计算FFT
N = length(x);
X = fft(x);
f = Fs*(0:(N/2))/N;% 绘制FFT图
subplot(2,1,2);
plot(f,abs(X(1:N/2+1)));
title('FFT');
xlabel('频率 (Hz)');
ylabel('幅度');

image-20230308202228276

在这个例子中,我们生成了一个频率为100Hz的正弦信号。我们使用Matlab的fft函数计算FFT,并将结果绘制成幅度谱。注意,在绘制幅度谱时,我们只绘制了频率为正的一半,因为FFT算法输出的结果是对称的。

求取功率谱

通过FFT变换可以得到信号的幅度谱,但是为了更好地了解信号特性,我们通常需要求取信号的功率谱密度。功率谱密度描述了信号在不同频率下的功率分布情况。

求取功率谱的方法是,将信号进行FFT变换后,将每个频率上的幅度平方除以信号长度,并乘以一个系数,即可得到功率谱密度。具体公式如下:

Pk=2∣Xk∣2NP_k=\frac{2|X_k|^2}{N}Pk=N2∣Xk2

其中,PkP_kPk是频率为kkk的功率谱密度,XkX_kXk是频率为kkk的信号幅度,NNN是信号长度。

以下是一个简单的Matlab代码实现求取功率谱:

% 生成测试信号
Fs = 1000;      % 采样频率
t = 0:1/Fs:1-1/Fs;   % 时间向量
x = 1*sin(2*pi*100*t); % 信号% 绘制信号图
subplot(2,1,1);
plot(t,x);
title('信号');
xlabel('时间 (s)');
ylabel('幅度');% 计算FFT
N = length(x);
X = fft(x);
f = Fs*(0:(N/2))/N;% 计算功率谱
P = (2*abs(X(1:N/2+1)).^2)/N;% 绘制功率谱图
subplot(2,1,2);
plot(f,P);
title('功率谱密度');
xlabel('频率 (Hz)');
ylabel('功率');

image-20230308201245085

注意,我们在计算功率谱时,使用了一个系数222,这是因为我们只绘制了频率为正的一半,而实际上信号的功率谱是对称的。

结论

本文介绍了如何使用Matlab实现FFT变换,并求取信号的功率谱密度。通过FFT变换,我们可以将信号从时域转换到频域,进一步了解信号的特性。

相关文章:

Matlab实现FFT变换

Matlab实现FFT变换 文章目录Matlab实现FFT变换原理实现手算验证简单fft变换和频谱求取功率谱结论在信号处理中&#xff0c;快速傅里叶变换&#xff08;FFT&#xff09;是一种非常常见的频域分析方法。本文将介绍如何使用Matlab实现FFT变换&#xff0c;并通过Matlab代码演示实际…...

JVM调优面试题——垃圾回收专题

文章目录1、如何确定一个对象是垃圾&#xff1f;1.1、引用计数法1.2、可达性分析2、对象被判定为不可达对象之后就“死”了吗&#xff1f;3、都有哪些垃圾收集算法&#xff1f;3.1、 标记-清除(Mark-Sweep)3.2、标记-复制(Mark-Copying)3.3、标记-整理(Mark-Compact)3.4、分代收…...

java启动命令中-D和--的区别

目录一、java -D 添加参数二、java -- 添加参数在 SpringBoot 项目中&#xff0c;启动时&#xff0c;通过 -D 或 -- 添加参数&#xff0c;都可以直接覆盖 yml 或 properties 配置文件中的同名配置&#xff0c;如果不存在则相当于添加了一个配置。 一、java -D 添加参数 java -D…...

QML Popup详解

1.简介 弹出式用户界面控件&#xff0c;它可以与Window或ApplicationWindow一起使用&#xff0c;默认不可见。 常用属性介绍&#xff0c;一些公用的基础属性就不作介绍&#xff0c;可以查看我前面写的文章。 closePolicy : enumeration &#xff1a;此属性决定弹出窗口关闭的…...

[2.1.6]进程管理——线程的实现方式和多线程模型

文章目录第二章 进程管理线程的实现方式和多线程模型一、线程的实现方式&#xff08;一&#xff09;用户级线程&#xff08;二&#xff09;内核级线程二、多线程模型&#xff08;一&#xff09;一对一模型&#xff08;二&#xff09;多对一模型&#xff08;三&#xff09;多对多…...

小白做什么兼职项目赚钱?宝妈拍短视频赚钱的方法

很多宝妈在家带孩子之余想做兼职赚点小钱&#xff0c;依靠互联网无疑是比较方便的途径&#xff0c;在刷单、微商等网上兼职成为过去式以后&#xff0c;很多宝妈选择了短视频创业。 宝妈怎么拍短视频&#xff1f; 宝妈因为要照顾宝宝还要兼顾家务&#xff0c;空闲的时间比较琐碎…...

第十四届蓝桥杯第三期模拟赛 C/C++ B组 原题与详解

文章目录 一、填空题 1、1 找最小全字母十六进制数 1、1、1 题目描述 1、1、2 题解关键思路与解答 1、2 给列命名 1、2、1 题目描述 1、2、2 题解关键思路与解答 1、3 日期相等 1、3、1 题目描述 1、3、2 题解关键思路与解答 1、4 乘积方案数 1、4、1 题目描述 1、4、2 题解关…...

Linux中断操作

一、thread_irq在内核中&#xff0c; 除了可以通过request_irq() 、 devm_request_irq()申请中断以外&#xff0c; 还可以通过以下二个函数申请( 它们比request_irq和devm_request_irq多了一个参数thread_fn)。 用这两个API申请中断的时候&#xff0c; 内核会为相应的中断号分配…...

看看CabloyJS是如何异步加载并执行go wasm模块的

介绍 CabloyJS提供了一个内置模块a-wasmgo&#xff0c;将go wasm模块的异步加载运行机制进行了封装&#xff0c;使我们可以非常方便的在CabloyJS项目中引入go wasm&#xff0c;从而支持更多的业务场景开发 下面&#xff0c;我们以测试模块test-party为例&#xff0c;演示引入…...

嵌入式C语言九大数据结构操作方式详解

在C语言的开发过程中&#xff0c;灵活使用数据结构&#xff0c;对提高编程效率有极大的帮助。 目录 1 数组 2 链表 3 跳表 4 栈 5 队列 6 树 7 堆 8 散列表 9 图 10 总结 数据结构想必大家都不会陌生&#xff0c;对于一个成熟的程序员而言&#xff0c;熟悉和掌握数据…...

【C++学习】栈 | 队列 | 优先级队列 | 反向迭代器

&#x1f431;作者&#xff1a;一只大喵咪1201 &#x1f431;专栏&#xff1a;《C学习》 &#x1f525;格言&#xff1a;你只管努力&#xff0c;剩下的交给时间&#xff01; 栈 | 队列 | 优先级队列 | 反向迭代器&#x1f63c;容器适配器&#x1f648;什么是适配器&#x1f64…...

Python—看我分析下已经退市的 可转债 都有什么特点

分析 需求分析 可转债退市原因的种类与占比是多少 强赎与非强赎导致的退市可转债 存续时间 维度占比 强赎与非强赎导致的退市可转债 发行资金 规模占比 强赎与非强赎导致的退市可转债 各个评级 的占比 强赎与非强赎导致的退市可转债 各个行业&#xff08;一级行业&#xf…...

【第八课】空间数据基础与处理——数据结构转化

一、前言 数据结构即指数据组织的形式,是适合于计算机存储、管理和处理的数据逻辑结构。对空间数据则是地理实体的空间排列方式和相互关系的抽象描述。它是对数据的一种理解和解释,不说明数据结构的数据是毫无用处的,不仅用户无法理解,计算机程序也不能正确地处理,对同样一组数…...

MATLAB绘制三Y轴坐标图:补充坐标轴及字体设置

三轴坐标图 1 函数 MATLAB绘制三轴图函数可见MATLAB帮助-multiplotyyy 基础图形绘制是很简单&#xff0c;但坐标轴及字体设置该如何实现呢&#xff1f; 本文以以下几个例子为例&#xff0c;希望可以解决在利用MATLAB绘制三轴坐标图时常见的疑惑。 2 案例 2.1 案例1&#xf…...

springboot项目中Quartz

下面内容大家可在自己创建的 springboot项目中 玩1 定时清理垃圾图片定时任务组件Quartz,可以根据我们设定的周期&#xff0c;定时执行目标任务计划1.1 Quartz介绍&#xff08;了解&#xff09;Quartz是Job scheduling&#xff08;作业调度&#xff09;领域的一个开源项目&…...

Presto本地开发,plugin的设置

1. 新的问题 之前搭建Presto的本地开发环境时&#xff0c;一直使用config.properties中的plugin.bundles配置项定义需要加载的plugin模块&#xff0c;详细可以参考博客《win10基于IDEA&#xff0c;搭建Presto开发环境》presto服务启动时&#xff0c;指定加载哪些组件&#xff…...

2023年3月西安/杭州/深圳/东莞NPDP产品经理认证考试报名

产品经理国际资格认证NPDP是国际公认的唯一的新产品开发专业认证&#xff0c;集理论、方法与实践为一体的全方位的知识体系&#xff0c;为公司组织层级进行规划、决策、执行提供良好的方法体系支撑。 【认证机构】 产品开发与管理协会&#xff08;PDMA&#xff09;成立于1979年…...

Vue3笔记01 创建项目,Composition API,新组件,其他

Vue3 创建Vue3项目 vue-cli //查看vue/cli版本&#xff0c;确保在4.5.0以上 vue --version //安装或升级vue/cli npm install -g vue/cli //创建项目 vue create new_project //启动 cd new_project npm run serve 也可以通过vue ui进入图形化界面进行创建 vite 新一代前端…...

pandas数据分析(二)

文章目录DataFrame数据处理与分析读取Excel文件中的数据筛选符合特定条件的数据查看数据特征和统计信息按不同标准对数据排序使用分组与聚合对员工业绩进行汇总DataFrame数据处理与分析 部分数据如下 这个数据百度可以搜到&#xff0c;就是下面这个 读取Excel文件中的数据 …...

Spring实现[拦截器+统一异常处理+统一数据返回]

Spring拦截器 1.实现一个普通拦截器 关键步骤 实现 HandlerInterceptor 接口重写 preHeadler 方法&#xff0c;在方法中编写自己的业务代码 Component public class LoginInterceptor implements HandlerInterceptor {/*** 此方法返回一个 boolean&#xff0c;如果为 true …...

大数据学习栈记——Neo4j的安装与使用

本文介绍图数据库Neofj的安装与使用&#xff0c;操作系统&#xff1a;Ubuntu24.04&#xff0c;Neofj版本&#xff1a;2025.04.0。 Apt安装 Neofj可以进行官网安装&#xff1a;Neo4j Deployment Center - Graph Database & Analytics 我这里安装是添加软件源的方法 最新版…...

苍穹外卖--缓存菜品

1.问题说明 用户端小程序展示的菜品数据都是通过查询数据库获得&#xff0c;如果用户端访问量比较大&#xff0c;数据库访问压力随之增大 2.实现思路 通过Redis来缓存菜品数据&#xff0c;减少数据库查询操作。 缓存逻辑分析&#xff1a; ①每个分类下的菜品保持一份缓存数据…...

WEB3全栈开发——面试专业技能点P2智能合约开发(Solidity)

一、Solidity合约开发 下面是 Solidity 合约开发 的概念、代码示例及讲解&#xff0c;适合用作学习或写简历项目背景说明。 &#x1f9e0; 一、概念简介&#xff1a;Solidity 合约开发 Solidity 是一种专门为 以太坊&#xff08;Ethereum&#xff09;平台编写智能合约的高级编…...

大模型多显卡多服务器并行计算方法与实践指南

一、分布式训练概述 大规模语言模型的训练通常需要分布式计算技术,以解决单机资源不足的问题。分布式训练主要分为两种模式: 数据并行:将数据分片到不同设备,每个设备拥有完整的模型副本 模型并行:将模型分割到不同设备,每个设备处理部分模型计算 现代大模型训练通常结合…...

laravel8+vue3.0+element-plus搭建方法

创建 laravel8 项目 composer create-project --prefer-dist laravel/laravel laravel8 8.* 安装 laravel/ui composer require laravel/ui 修改 package.json 文件 "devDependencies": {"vue/compiler-sfc": "^3.0.7","axios": …...

Go语言多线程问题

打印零与奇偶数&#xff08;leetcode 1116&#xff09; 方法1&#xff1a;使用互斥锁和条件变量 package mainimport ("fmt""sync" )type ZeroEvenOdd struct {n intzeroMutex sync.MutexevenMutex sync.MutexoddMutex sync.Mutexcurrent int…...

TSN交换机正在重构工业网络,PROFINET和EtherCAT会被取代吗?

在工业自动化持续演进的今天&#xff0c;通信网络的角色正变得愈发关键。 2025年6月6日&#xff0c;为期三天的华南国际工业博览会在深圳国际会展中心&#xff08;宝安&#xff09;圆满落幕。作为国内工业通信领域的技术型企业&#xff0c;光路科技&#xff08;Fiberroad&…...

libfmt: 现代C++的格式化工具库介绍与酷炫功能

libfmt: 现代C的格式化工具库介绍与酷炫功能 libfmt 是一个开源的C格式化库&#xff0c;提供了高效、安全的文本格式化功能&#xff0c;是C20中引入的std::format的基础实现。它比传统的printf和iostream更安全、更灵活、性能更好。 基本介绍 主要特点 类型安全&#xff1a…...

零知开源——STM32F103RBT6驱动 ICM20948 九轴传感器及 vofa + 上位机可视化教程

STM32F1 本教程使用零知标准板&#xff08;STM32F103RBT6&#xff09;通过I2C驱动ICM20948九轴传感器&#xff0c;实现姿态解算&#xff0c;并通过串口将数据实时发送至VOFA上位机进行3D可视化。代码基于开源库修改优化&#xff0c;适合嵌入式及物联网开发者。在基础驱动上新增…...

深度剖析 DeepSeek 开源模型部署与应用:策略、权衡与未来走向

在人工智能技术呈指数级发展的当下&#xff0c;大模型已然成为推动各行业变革的核心驱动力。DeepSeek 开源模型以其卓越的性能和灵活的开源特性&#xff0c;吸引了众多企业与开发者的目光。如何高效且合理地部署与运用 DeepSeek 模型&#xff0c;成为释放其巨大潜力的关键所在&…...