当前位置: 首页 > news >正文

salmon使用体验

文章目录

  • salmon转录本定量
    • brief
    • 模式一:fastq作为输入文件
      • 需要特别注意得地方
    • 模式二: bam文件作为输入

salmon转录本定量

brief

第一点是,通常说的转录组分析其中有一项是转录本定量,这是一个很trick的说话,说成定量/quantify要适合一些。
因为我们可以根据 reads summary的方式分为两种定量,一种是 transcript-level quantify,一种是 gene-level quantify。

第二点 transcript-level quantify根据比对方式又可以细分:

Transcript quantification 大致分为两类:

  • Alignment-based transcript quantification
    这里的比对也要作出区分,一种是和基因组比对(aligns reads to the reference genome),一种是和转录组比对(aligns reads to the reference transcriptome)。
    和基因组比对后,可以利用Cufflinks or StringTie 等tools,不仅可以测算已知转录本丰度还可以发现新的转录本
    和转录组比对后,可以利用RSEM or eXpress or Salmon-Aln 等tools进行转录本丰度的测算
  • Alignment-free transcript quantification
    就是直接 assign reads directly to transcripts,比如ailfish, Salmon-SMEM,quasi-mapping, and kallisto 这些工具可以实现。

conda activate NGS
conda config --add channels biocondaconda search salmon
conda install salmonsalmon --help

salmon v0.14.1

Usage: salmon -h|–help or
salmon -v|–version or
salmon -c|–cite or
salmon [–no-version-check] [-h | options]

Commands:
index Create a salmon index
quant Quantify a sample
alevin single cell analysis
swim Perform super-secret operation
quantmerge Merge multiple quantifications into a single file

模式一:fastq作为输入文件

# step 1
# make salmon map index
# The index is a structure that salmon uses to quasi-map RNA-seq reads during quantification.
wget https://ftp.ensembl.org/pub/release-111/fasta/macaca_mulatta/cdna/Macaca_mulatta.Mmul_10.cdna.all.fa.gz# 软件作者希望制作 decoy awere transcriptome,我没管,直接运行下下面的口令
salmon index -t ./Macaca_fascicularis.Macaca_fascicularis_6.0.cdna.all.fa.gz  -i ./Macaca_fascicularis.Macaca_fascicularis_6.0.cdna.all.salmon.indexls Macaca_fascicularis.Macaca_fascicularis_6.0.cdna.all.salmon.index/
# duplicate_clusters.tsv  hash.bin  header.json  indexing.log  quasi_index.log  refInfo.json  rsd.bin  sa.bin  txpInfo.bin  versionInfo.json
# make index done # step 2
# rawdata QC
datadir="/public/Project_datasets/HY0007/Macaca_fascicularis_RNA-seq/PM-XS05KF2023080038-05四川大学6个食蟹猴普通真核有参转录组建库测序分析任务单/ANNO_XS05KF2023080038_PM-XS05KF2023080038-05_2023-11-02_16-01-18_22C2TNLT3/Rawdata"
mkdir 20240426-NGS-6samples
cd 20240426-NGS-6samples/mkdir qc
ls ${datadir}/ |while read id ;do echo ${datadir}/${id}/${id}_R1.fq.gz;done > qc.txt
ls ${datadir}/ |while read id ;do echo ${datadir}/${id}/${id}_R2.fq.gz;done >> qc.txtcat qc.txt |while read id ;do (fastqc -o ./qc $id &);done
multiqc ./qc -o ./multiqc# trim-adaptor
###
cat qc.txt |grep "R1" >1.txt
cat qc.txt |grep "R2" >2.txt
paste 1.txt 2.txt  > trim.txt
cat trim.txt |while read id;do a=($id) && echo /public/home/djs/software/TrimGalore-master/trim_galore -q 25 --phred33 --stringency 3 -o ./Clean_data --paired ${a[0]} ${a[1]}; done > parafly.txt# conda install -c bioconda parafly
nohup ParaFly -c parafly.txt -CPU 15 >>out.log 2>>err.log &###
cd Clean_data
mkdir {Fastqc,Multiqc}ls |grep "val.*fq" |while read id ;do (fastqc -o ./Fastqc ./$id &);done
multiqc ./Fastqc -o ./Multiqc# step3 map to reference
index="/public/home/djs/reference/macaca_fascicularis/Macaca_fascicularis.Macaca_fascicularis_6.0.cdna.all.salmon.index/"
# 双端测序
cd /public/home/djs/huiyu/project/HY0007/20240426-NGS-6samples/Clean_datals *val*gz|cut -d"_" -f 1|sort -u |while read id;do
echo salmon quant -i $index -l ISF --gcBias \-1 ${id}_R1_val_1.fq.gz -2 ${id}_R2_val_2.fq.gz -p 2 \-o ../salmon_output/${id}_output 
done > paired_salmon.shnohup ParaFly -c paired_salmon.sh -CPU 12 >>out.log 2>>err.log &# quantify result
ls
# aux_info  cmd_info.json  lib_format_counts.json  libParams  logs  quant.sf
head quant.sf
# ENSMFAT00000064841.2    354     110.000 37.761624       31.000
# ENSMFAT00000064566.2    372     126.000 107.406974      101.000
# ENSMFAT00000061855.2    336     96.000  108.422787      77.680
# ENSMFAT00000061921.2    336     96.000  67.838005       48.603
# ENSMFAT00000061935.2    336     96.000  185.240776      132.717
# ENSMFAT00000097936.1    252     45.460  20.632500       7.000
# ENSMFAT00000064576.2    348     107.929 130.356210      105.000
# ENSMFAT00000064726.2    339     98.000  60.160059       44.000
# ENSMFAT00000064735.2    267     52.000  10.307143       4.000## 进入R工作
# 进入R做一下 FPKM得转换countToTpm <- function(counts, effLen)
countToTpm <-  function(counts, effLen){rate <- log(counts) - log(effLen)denom <- log(sum(exp(rate)))exp(rate - denom + log(1e6))
}countToFpkm <- function(counts, effLen){N <- sum(counts)exp( log(counts) + log(1e9) - log(effLen) - log(N) )
}fpkmToTpm <- function(fpkm){exp(log(fpkm) - log(sum(fpkm)) + log(1e6))
}df <- read.table("quant.sf",header=T)
# 过滤低表达基因
df <- df[df$NumReads >=10,]
# normalization
df$fpkm <- countToFpkm(df$NumReads,df$EffectiveLength)
df$tpm <- countToTpm(df$NumReads,df$EffectiveLength)
write.csv(df,file="quant_filter_transform.csv",row.names=F)files <- list.files()
dlist <- lapply(files,function(file){read.table(paste("./",file,"/quant_filter_transform.csv",sep=""),header=T,sep=",")})

需要特别注意得地方

  • 参数 —libType A 的设置,一般情况是 --libType ISF 或者 --libType A 让软件自己推测。
    在这里插入图片描述

模式二: bam文件作为输入

这个bam文件是fastq文件与参考转录组比对的结果,注意不是与参考基因组的比对结果。
然后 transcripts.fa 是参考转录组文件(这种模式下,可以不用建议参考转录组的index)。

> ./bin/salmon quant -t transcripts.fa -l <LIBTYPE> -a aln.bam -o salmon_quant
# quantify result
ls
# aux_info  cmd_info.json  lib_format_counts.json  libParams  logs  quant.sf
head quant.sf
# ENSMFAT00000064841.2    354     110.000 37.761624       31.000
# ENSMFAT00000064566.2    372     126.000 107.406974      101.000
# ENSMFAT00000061855.2    336     96.000  108.422787      77.680
# ENSMFAT00000061921.2    336     96.000  67.838005       48.603
# ENSMFAT00000061935.2    336     96.000  185.240776      132.717
# ENSMFAT00000097936.1    252     45.460  20.632500       7.000
# ENSMFAT00000064576.2    348     107.929 130.356210      105.000
# ENSMFAT00000064726.2    339     98.000  60.160059       44.000
# ENSMFAT00000064735.2    267     52.000  10.307143       4.000

相关文章:

salmon使用体验

文章目录 salmon转录本定量brief模式一&#xff1a;fastq作为输入文件需要特别注意得地方 模式二&#xff1a; bam文件作为输入 salmon转录本定量 brief 第一点是&#xff0c;通常说的转录组分析其中有一项是转录本定量&#xff0c;这是一个很trick的说话&#xff0c;说成定量…...

Ubuntu 20.04 安装 Ansible

使用官方的 Ubuntu PPA 更新包列表&#xff1a; apt update安装软件属性常用命令 apt install software-properties-common添加 Ansible PPA 到系统&#xff1a; add-apt-repository --yes --update ppa:ansible/ansible再次更新包列表以包括新添加的 PPA&#xff1a; apt …...

TypeScript学习笔记:强类型JavaScript的优雅之旅

在前端开发领域&#xff0c;JavaScript以其灵活性和广泛的支持度成为无可争议的王者。然而&#xff0c;随着项目规模的增长&#xff0c;JavaScript的动态类型特性开始暴露出一些问题&#xff0c;比如代码的可维护性、类型错误难以提前发现等。为了解决这些问题&#xff0c;Micr…...

监控异地组网怎么组网?

监控异地组网是指在不同地域的网络环境下&#xff0c;实现对监控设备的远程访问和管理。在传统的网络环境下&#xff0c;由于网络限制和设备配置等问题&#xff0c;监控设备的远程访问往往受到一定的限制和困扰。为了解决这个问题&#xff0c;引入了天联组网技术&#xff0c;实…...

将本地托管模型与 Elastic AI Assistant 结合使用的好处

作者&#xff1a;来自 Elastic James Spiteri, Dhrumil Patel 当今公共部门组织利用生成式人工智能解决安全挑战的一种方式。 凭借其筛选大量数据以发现异常模式的能力&#xff0c;生成式人工智能现在在帮助团队保护其组织免受网络威胁方面发挥着关键作用。 它还可以帮助安全专…...

Linux的内核态和用户态

一、Linux操作系统运行在两种不同的运行模式下&#xff1a;内核态&#xff08;Kernel Mode&#xff09;和用户态&#xff08;User Mode&#xff09; 内核态&#xff08;Kernel Mode&#xff09;&#xff1a; 内核态也称为特权模式或系统模式&#xff0c;是操作系统内核执行代码…...

springboot利用Redis的Geo数据类型,获取附近店铺的坐标位置和距离列表

文章目录 GEO介绍GEO命令行应用添加地理坐标位置获取指定单位半径的全部地理位置列表springboot 的实际应用 GEO介绍 在Redis 3.2版本中&#xff0c;新增了一种数据类型&#xff1a;GEO&#xff0c;它主要用于存储地理位置信息&#xff0c;并对存储的信息进行操作。 GEO实际上…...

Vitis HLS 学习笔记--理解串流Stream(2)

目录 1. 简介 2. 极简的对比 3. 硬件模块的多次触发 4. 进一步探讨 do-while 5. 总结 1. 简介 在这篇博文中《Vitis HLS 学习笔记--AXI_STREAM_TO_MASTER-CSDN博客》&#xff0c;我分享了关于 AXI Stream 接口的实际应用案例。然而&#xff0c;尽管文章中提供了代码示例&…...

Golang | Leetcode Golang题解之第80题删除有序数组中的重复项II

题目&#xff1a; 题解&#xff1a; func removeDuplicates(nums []int) int {n : len(nums)if n < 2 {return n}slow, fast : 2, 2for fast < n {if nums[slow-2] ! nums[fast] {nums[slow] nums[fast]slow}fast}return slow }...

uniapp自定义websocket类实现socket通信、心跳检测、连接检测、重连机制

uniapp自定义websocket类实现socket通信、心跳检测、检测连接、重连机制&#xff0c;仿vue-socket插件功能实现发送序列号进行连接检测&#xff0c;发送消息时42【key,value】格式&#xff0c;根据后端返回数据和需要接收到的数据做nsend与onSocketMessage的修改 //使用socket…...

Hive UDTF之explode函数、Lateral View侧视图

Hive UDTF之explode函数 Hive 中的 explode() 函数是一种用于处理数组类型数据的 User-Defined Table-Generating Function (UDTF)。它将数组拆分成多行&#xff0c;每个数组元素对应生成的一行数据。这在处理嵌套数据结构时非常有用&#xff0c;例如处理 JSON 格式的数据。 …...

智慧公厕打造智慧城市新标杆

公共厕所作为城市基础设施的重要组成部分&#xff0c;直接关系到市民的生活品质和城市形象。传统的公厕管理方式存在着许多问题&#xff0c;如环境脏乱、清洁不及时等&#xff0c;给市民带来了诸多不便和不满。而智慧公厕作为一种全新的管理模式&#xff0c;通过物联网、大数据…...

字节发布文生图模型PuLID:高效身份ID特征定制,单张图像克隆AI虚拟分身

前言 字节研究团队近日提出了一种新型的文生图身份ID定制方法PuLID(Pure and Lightning ID Customization)。相较于传统的微调方法&#xff0c;PuLID无需复杂的参数优化就可以实现高效的身份ID定制&#xff0c;且能最大程度减少对原始模型行为的干扰。 PuLID是通过将轻量级的…...

SpringBoot启动流程分析之创建SpringApplication对象(一)

SpringBoot启动流程分析之创建SpringApplication对象(一) 目录&#xff1a; 文章目录 SpringBoot启动流程分析之创建SpringApplication对象(一)1、SpringApplication的构造方法1.1、推断应用程序类型1.2、设置Initializers1.3、设置Listener1.4、推断main方法所在类 流程分析…...

SSH简介 特点以及作用

引言 SSH&#xff08;Secure Shell&#xff09;是一种用于安全远程访问和数据传输的网络协议。它提供了一种安全的机制&#xff0c;使得用户可以在不安全的网络中安全地进行远程登录、命令执行和文件传输。SSH通过加密技术和认证机制来保护数据的安全性&#xff0c;防止数据在…...

MQTT服务搭建及python使用示例

1、MQTT协议 1.1、MQTT介绍 MQTT&#xff08;Message Queuing Telemetry Transport&#xff09;是一种轻量级的、基于发布/订阅模式的通信协议&#xff0c;通常用于物联网设备之间的通讯。它具有低带宽、低功耗和开放性等特点&#xff0c;适合在网络带宽有限或者网络连接不稳定…...

Ubuntu如何设置中文输入法

概述 Ubuntu 是一个基于 Debian 构建的开源操作系统&#xff0c;拥有广泛的用户群体和强大的社区支持。是免费、开源的操作系统。被设计为一个适用于个人电脑、服务器和云平台的通用操作系统。Ubuntu的目标是提供一个稳定、易于使用和免费的操作系统&#xff0c;以促进人们在计…...

PostgreSQL的pg_dump和 pg_dumpall 异同点

PostgreSQL的pg_dump和 pg_dumpall 异同点 基础信息 OS版本&#xff1a;Red Hat Enterprise Linux Server release 7.9 (Maipo) DB版本&#xff1a;16.2 pg软件目录&#xff1a;/home/pg16/soft pg数据目录&#xff1a;/home/pg16/data 端口&#xff1a;5777pg_dump 和 pg_dum…...

【Ping】Windows 网络延迟测试 ping 、telnet、tcping 工具

ping 命令 属于网络层的ICMP协议&#xff0c;只能检查 IP 的连通性或网络连接速度&#xff0c; 无法检测IP的端口状态。 telnet telnet命令&#xff0c;属于应用层的协议&#xff0c;用于远程登录&#xff0c;也可用于检测IP的端口状态。但是功能有限&#xff0c;只能检测一时…...

DuDuTalk:4G桌面拾音设备在银行网点服务场景的应用价值

随着科技的飞速发展&#xff0c;银行业也在不断地寻求创新以提高服务质量和效率。在这个过程中&#xff0c;4G桌面拾音设备作为一种新型的智能设备&#xff0c;其在银行网点服务场景中的应用价值逐渐凸显出来。本文将从多个角度探讨4G桌面拾音设备在银行网点服务场景的应用价值…...

高危文件识别的常用算法:原理、应用与企业场景

高危文件识别的常用算法&#xff1a;原理、应用与企业场景 高危文件识别旨在检测可能导致安全威胁的文件&#xff0c;如包含恶意代码、敏感数据或欺诈内容的文档&#xff0c;在企业协同办公环境中&#xff08;如Teams、Google Workspace&#xff09;尤为重要。结合大模型技术&…...

Linux --进程控制

本文从以下五个方面来初步认识进程控制&#xff1a; 目录 进程创建 进程终止 进程等待 进程替换 模拟实现一个微型shell 进程创建 在Linux系统中我们可以在一个进程使用系统调用fork()来创建子进程&#xff0c;创建出来的进程就是子进程&#xff0c;原来的进程为父进程。…...

C++ 设计模式 《小明的奶茶加料风波》

&#x1f468;‍&#x1f393; 模式名称&#xff1a;装饰器模式&#xff08;Decorator Pattern&#xff09; &#x1f466; 小明最近上线了校园奶茶配送功能&#xff0c;业务火爆&#xff0c;大家都在加料&#xff1a; 有的同学要加波霸 &#x1f7e4;&#xff0c;有的要加椰果…...

【Linux】自动化构建-Make/Makefile

前言 上文我们讲到了Linux中的编译器gcc/g 【Linux】编译器gcc/g及其库的详细介绍-CSDN博客 本来我们将一个对于编译来说很重要的工具&#xff1a;make/makfile 1.背景 在一个工程中源文件不计其数&#xff0c;其按类型、功能、模块分别放在若干个目录中&#xff0c;mak…...

es6+和css3新增的特性有哪些

一&#xff1a;ECMAScript 新特性&#xff08;ES6&#xff09; ES6 (2015) - 革命性更新 1&#xff0c;记住的方法&#xff0c;从一个方法里面用到了哪些技术 1&#xff0c;let /const块级作用域声明2&#xff0c;**默认参数**&#xff1a;函数参数可以设置默认值。3&#x…...

jdbc查询mysql数据库时,出现id顺序错误的情况

我在repository中的查询语句如下所示&#xff0c;即传入一个List<intager>的数据&#xff0c;返回这些id的问题列表。但是由于数据库查询时ID列表的顺序与预期不一致&#xff0c;会导致返回的id是从小到大排列的&#xff0c;但我不希望这样。 Query("SELECT NEW com…...

goreplay

1.github地址 https://github.com/buger/goreplay 2.简单介绍 GoReplay 是一个开源的网络监控工具&#xff0c;可以记录用户的实时流量并将其用于镜像、负载测试、监控和详细分析。 3.出现背景 随着应用程序的增长&#xff0c;测试它所需的工作量也会呈指数级增长。GoRepl…...

【Ftrace 专栏】Ftrace 参考博文

ftrace、perf、bcc、bpftrace、ply、simple_perf的使用Ftrace 基本用法Linux 利用 ftrace 分析内核调用如何利用ftrace精确跟踪特定进程调度信息使用 ftrace 进行追踪延迟Linux-培训笔记-ftracehttps://www.kernel.org/doc/html/v4.18/trace/events.htmlhttps://blog.csdn.net/…...

LUA+Reids实现库存秒杀预扣减 记录流水 以及自己的思考

目录 lua脚本 记录流水 记录流水的作用 流水什么时候删除 我们在做库存扣减的时候&#xff0c;显示基于Lua脚本和Redis实现的预扣减 这样可以在秒杀扣减的时候保证操作的原子性和高效性 lua脚本 // ... 已有代码 ...Overridepublic InventoryResponse decrease(Inventor…...

【Java多线程从青铜到王者】单例设计模式(八)

wait和sleep的区别 我们的wait也是提供了一个还有超时时间的版本&#xff0c;sleep也是可以指定时间的&#xff0c;也就是说时间一到就会解除阻塞&#xff0c;继续执行 wait和sleep都能被提前唤醒(虽然时间还没有到也可以提前唤醒)&#xff0c;wait能被notify提前唤醒&#xf…...