当前位置: 首页 > news >正文

【数学】泰勒公式

目录

引言

一、泰勒公式

1.泰勒公式及推导

(1)推导

(2)公式

2.泰勒中值定理

(1)定理1(佩亚诺余项)

(2)定理2(拉格朗日余项)

(3)两个定理的区别

3.麦克劳林公式

二、常用的泰勒公式

三、泰勒公式核心考点

1.求极限

2.求高阶导

3.证明题

总结


ID:HL_5461

引言

对于任意无穷数,这里以\pi为例,我们可以用多个\frac{1}{10}的次方将其不断展开,即\pi =3.1415...=3\times( \frac{1}{10})^0+1\times( \frac{1}{10})^1+4\times( \frac{1}{10})^2+1\times( \frac{1}{10})^3+5\times( \frac{1}{10})^4+...

类比的,对于一个函数f(x),我们也可以将它写作无穷多x的次方展开,即f(x)=a_0(x-x_0)^0+a_1(x-x_0)^1+a_2(x-x_0)^2+...+a_n(x-x_0)^n

这也就是泰勒公式的诞生。

当然就像有限个\frac{1}{10}的次方不能精确表示一个无穷小数一样,上述式子肯定有一定的误差,这个后文讨论。


一、泰勒公式

1.泰勒公式及推导

(1)推导

我们将引言中所写式子记作P_n(x),所以有:

P_n(x)=a_0+a_1(x-x_0)^1+a_2(x-x_0)^2+a_3(x-x_0)^3+...+a_n(x-x_0)^n

正如前面所说,这个式子有一定的误差,不能准确表示f(x),所以我们退而求其次,选择让这个式子无限接近f(x),即f(x)-P_n(x)(x-x_0)^n的高阶无穷小。

接下来的任务是确定系数a_i。我们先定一个条件:设f(x)x=x_0处n阶可导。

那么如何让P_n(x)非常接近f(x)呢?只需满足两个条件:1.P_n(x)f(x)x_0处函数值相等;2.P_n(x)f(x)x_0处直到n阶倒数相等。

我们可以这样理解上面两个条件:函数值相等说明在同一个点处,导数相等说明函数变化一样,值一样变化一样,所以可以近似看作相等。以下是a_i的推导过程:

1

\because P_n(x)f(x)x_0处函数值相等

\therefore f(x_0)=P_n(x_0)=a_0a_0=f(x_0)

2

P_n(x)f(x)求一阶导,并带入x=x_0

\therefore f'(x)=P_n'(x)=a_1a_1=f'(x_0)

3

P_n(x)f(x)求二阶导,并带入x=x_0

\therefore f''(x)={P_n}''(x)=2!\cdot a_2a_2=\frac{f''(x_0)}{2!}

4

不断求导、总结,所以:

a_0=f(x_0),a_n=\frac{f^{(n)}(x_0)}{n!}

(2)公式

将前面算出的a_i带入P_n(x),所以:

P_n(x)=f(x_0)+\frac{f'(x_0)}{1!}(x-x_0)+\frac{f''(x_0)}{2!}(x-x_0)^2+...+\frac{f^{(n)}(x_0)}{n!}(x-x_0)^n

由于在引言中说过,如果P_n(x)f(x)相比有一定误差,所以这里补充一个误差项就能与f(x)相等了。我们将这个误差项称为余项,记作R_n(x)

所以泰勒公式就是如下形式:

f(x)=f(x_0)+\frac{f'(x_0)}{1!}(x-x_0)+\frac{f''(x_0)}{2!}(x-x_0)^2+...+\frac{f^{(n)}(x_0)}{n!}(x-x_0)^n+R_n(x)

除了R_n(x)的前半部分是f(x)x_0处的n次多项展开式P_n(x)

R_n(x)称为余项,也是一个误差项

2.泰勒中值定理

泰勒中值定理是对余项R_n(x)的讨论。

(1)定理1(佩亚诺余项)

f(x)x具有直到n阶的导数,则有

f(x)=f(x_0)+\frac{f'(x_0)}{1!}(x-x_0)+\frac{f''(x_0)}{2!}(x-x_0)^2+...+\frac{f^{(n)}(x_0)}{n!}(x-x_0)^n+R_n(x)

其中, R(x)=o[(x-x_0)^n](x\rightarrow x_0)称为佩亚诺(Peano)余项。

该展开式称为f(x)在点x=x_0邻域的带佩亚诺余项的n阶泰勒公式。

(2)定理2(拉格朗日余项)

f(x)在包含x区间(a,b)内有直到n+1阶的导数,在区间[a,b]上有n阶连续导数,则对任意x\in [a,b]时有

f(x)=f(x_0)+\frac{f'(x_0)}{1!}(x-x_0)+\frac{f''(x_0)}{2!}(x-x_0)^2+...+\frac{f^{(n)}(x_0)}{n!}(x-x_0)^n+R_n(x)

其中, R(x)=\frac{f^{(n+1)}(\xi )}{(n+1)!}(x-x_0)^{n+1},(\xix_0x之间)称为拉格朗日余项。

该展开式称为f(x)在区间[a,b]的带拉格朗日余项的n阶泰勒公式。

注:对于拉格朗日余项的泰勒公式,根据定义,题目如果说在区间上有n+1阶的导数,那么做题时需展到n阶,n+1阶留给余项。

(3)两个定理的区别

这里可以结合前面定理内容加粗部分理解

1.成立条件不同。定理2对f(x)的可导性要求更高。2要求区间可导,1只要求点可导;2要求可导至n+1阶,1只要求可导至n阶。

2.x的取值范围不同。定理1需满足x\rightarrow x_0,仅适用于求极限问题;定理2中x可在符合条件的区间[a,b]上任取,甚至能取到任意实数,因此中值定理2更广泛地适用于证明题和近成似计算问题。
3.余项R_n(x)形式不同,佩亚诺余项便于求极限,而拉格朗日余项能具体估算近似误差的大小。

3.麦克劳林公式

麦克劳林公式就是令x_0=0时的泰勒公式:

f(x)=f(0)+\frac{f'(0)}{1!}x+\frac{f''(0)}{2!}x^2+...+\frac{f^{(n)}(0)}{n!}x^n+R_n(x)


二、常用的泰勒公式

sinx=x-\frac{x^3}{3!}+...+(-1)^{n-1}\frac{x^{2n-1}}{(2n-1)!}+o(x^{2n-1})
arcsinx=x+\frac{x^3}{6}+o(x^3)
tanx=x+\frac{x^3}{3}+o(x^3)
arctanx=x-\frac{x^3}{3}+o(x^3)
cosx=1-\frac{x^2}{2!}+...+(-1)^{n}\frac{x^{2n}}{(2n)!}+o(x^{2n})
ln(1+x)=x-\frac{x^2}{2}+...+(-1)^{n-1}\frac{x^{n}}{n}+o(x^{n})
e^x=1+x+\frac{x^2}{2!}+...+\frac{x^n}{n!}+o(x^n)
(1+x)^a=1+ax+\frac{a(a-1)}{2!}x^2+...+\frac{a(a-1)...(a-n-1))}{n!}x^n +o(x^n)

三、泰勒公式核心考点

1.求极限

方法:按上面给的重要泰勒公式无脑代入

例1:

求极限\lim_{x\rightarrow 0}\frac{cosx-e^{-\frac{x^2}{2}}}{x^4}

cosx=1-\frac{x^2}{2}+\frac{x^4}{24}+o(x^4)

e^{-\frac{x^2}{2}}=1+(-\frac{x^2}{2})+\frac{(-\frac{x^2}{2})^2}{2!}+o(x^4)=1-\frac{x^2}{2}+\frac{x^4}{8}+o(x^4)

将上面式子带入极限:

\lim_{x\rightarrow 0}\frac{cosx-e^{-\frac{x^2}{2}}}{x^4}=\lim_{x\rightarrow 0}\frac{-\frac{1}{12}x^4}{x^4}=-\frac{1}{12}

例2:

\lim_{x\rightarrow 0}\frac{ln(1+x)-(ax+bx^2)}{x^2}=2求a,b

ln(1+x)=x-\frac{x^2}{2}+o(x^2)代入极限

\lim_{x\rightarrow 0}\frac{ln(1+x)-(ax+bx^2)}{x^2}=\lim_{x\rightarrow 0}\frac{(1-a)x-(\frac{1}{2}+b)x^2+o(x^2)}{x^2}=2

\therefore 1-a=0,-(\frac{1}{2}+b)=2

\therefore a=-1,b=-\frac{5}{2}

例3:

f(x)二阶可导,f(0)=0,f'(0)=1,f''(0)=2,求极限\lim_{x\rightarrow 0}\frac{f(x)-x}{x^2}

由泰勒公式形式可得:f(x)=x+x^2+o(x^2)

代入极限:\lim_{x\rightarrow 0}\frac{f(x)-x}{x^2}=\lim_{x\rightarrow 0}\frac{x^2+o(x^2)}{x^2}=1

2.求n阶导数值

方法:依旧上述重要泰勒公式无脑往里代

例1:

求函数f(x)=x^2 ln(1+x)x=0处的n阶导数f^{(n)}(0)(n\geq 3)

ln(1+x)=x-\frac{x^2}{2}+...+(-1)^{n-1}\frac{x^{n}}{n}+o(x^{n})

f(x)=x^2 ln(1+x)=x^3-\frac{x^4}{2}+...+(-1)^{n-1}\frac{x^{n+2}}{n}+o(x^{n})

由泰勒公式的唯一性,第n项为\frac{f^{(n)}(0)}{n!}x^n

\therefore\frac{f^{(n)}(0)}{n!}x^n=(-1)^{n-1}\frac{x^n}{n-2}

\therefore f^{(n)}(0)=(-1)^{n-1}\frac{n!}{n-2}

3.证明题

方法:

1.使用拉格朗日余项,对n+1阶可导,展到第n阶

2.xx_0依题目选择

(证明题比较难,下面讲解会解释思路)

例1:

f(x)[0,1]上二阶可导,且f(0)=1,f'(0)=0,f"(x)\leq 2,求证:\max_{x\in [0,1]} f(x)\leq 2

思路:

首先写出公式,因为二阶可导所以展到一阶:

f(x)=f(x_0)+\frac{f'(x_0)}{1}(x-x_0)+\frac{f''(\xi )}{2}(x-x_0)^{2},(\xix_0x之间)

由于题目中告知f(0)f'(0),所以不妨猜测x_0=0,代入公式:

f(x)=f(0)+\frac{f'(0)}{1}x+\frac{f''(\xi )}{2}x^{2}=1+\frac{f''(\xi )}{2}x^{2},\xi \in (0,x)

\because f"(x)\leq 2,\xi \in (0,1)在定义域内。\therefore f"(\xi )\leq 2

\because x \in (0,1)\therefore x^2\in (0,1)

代入证毕

这题因为告知导数所以优先猜测x_0的值,将x_0代入和相关条件用完之后会发现已经做出来了,所以x的值就无需考虑了

例2:

f(x)[0,1]上二阶可导,f(0)=f(1)=0,\max_{x\in [0,1]} f(x)= 2,证明\exists \xi \in (0,1),使得f''(\xi )\leq -16

思路:

首先写出公式,因为二阶可导所以展到一阶:

f(x)=f(x_0)+\frac{f'(x_0)}{1}(x-x_0)+\frac{f''(\xi )}{2}(x-x_0)^{2},(\xix_0x之间)

由于题目中未提及导数相关,所以不妨猜测0和1是x,代入公式:

f(0)=f(x_0)+\frac{f'(x_0)}{1}(-x_0)+\frac{f''(\xi _1)}{2}(-x_0)^{2},\xi _1\in (0,x_0)..............1

f(1)=f(x_0)+\frac{f'(x_0)}{1}(1-x_0)+\frac{f''(\xi _2)}{2}(1-x_0)^{2},\xi _2\in (x_0,1)......2

0和1的相关条件似乎已经用完了

仔细查看上两式,会感觉x_0的缺少真的很碍眼,难道0和1应该用作x_0吗?但是如果换作x_0会发现这样只会减少f(x_0)一个未知量,并且这样做还会多f(x)一个未知量,好像和上两式没什么区别,所以暂时假定这个思路还是对的,接着往下看(下面是难点)

仔细思考一下\max_{x\in [0,1]} f(x)= 2,由于x_0的缺少所以尽量往x_0上去想:如何才能有一个f(x_0)和一个f'(x_0)?结合在区间上的最大值,我们可以联想到极大值。

假定极大值为x=a,则f(a)=2,f'(a)=0,令x_0a,则1、2式分别为:

于题目中未提及导数相关,所以不妨猜测0和1是x,代入公式:

f(0)=2+\frac{f''(\xi _1)}{2}(-a)^{2},\xi _1\in (0,x_0)..............3

f(1)=2+\frac{f''(\xi _2)}{2}(1-a)^{2},\xi _2\in (x_0,1)..........4

ax的取值范围内,f(0)f(1)有确定值,分类讨论能得出f''(\xi _1)f''(\xi _2)的范围

再看题目要求是“存在”,找到一个就OK,所以证毕

这题没有告知导数相关,所以优先猜测x的值,将x代入后发现条件不够,再往后考虑x_0相关,联系极值,假设并代入,最后可以求得范围

例3:

f(x)[0,1]上二阶可导,且\left | f(x) \right |\leq a,\left | f''(x) \right |\leq b,其中a,b都是非负常数,证明\left | f'(x) \right |\leq 2a+\frac{b}{2},\forall x\in (0,1)

思路:

首先写出公式,因为二阶可导所以展到一阶:

f(x)=f(x_0)+\frac{f'(x_0)}{1}(x-x_0)+\frac{f''(\xi )}{2}(x-x_0)^{2},(\xix_0x之间)

由于题目中提及f(x)f''(x),猜测告知条件为x_0,又加上x_0x的取值范围内这一常用隐含条件,则:

\left | f(x_0)+\frac{f'(x_0)}{1}(x-x_0)+\frac{f''(\xi )}{2}(x-x_0)^{2} \right |\leq a+f'(x_0)+\frac{b}{2}

到这一步已经条件用完,但是已经无路可走了,所以推翻重来

但是如果改用x,除了泰勒公式原式整个小于等于a啥也做不了,所以再换个思路,试着找点代代

题目没告知什么特殊值,那就只有拿0和1这两个端点试一试了

还是顾及题目给了导数,优先考虑x_0

f(x)=f(0)+\frac{f'(0)}{1}x+\frac{f''(\xi _1)}{2}x^{2},\xi _1\in (0,x)......................................1

f(x)=f(1)+\frac{f'(1)}{1}(x-1)+\frac{f''(\xi _2)}{2}(x-1)^{2},\xi _2\in (x,1)................2

两式相减再取绝对值进行放缩,发现和前面没什么区别,那就改取x

f(0)=f(x_0)+\frac{f'(x_0)}{1}(-x_0)+\frac{f''(\xi_1 )}{2}(-x_0)^{2},\xi _1\in (0,x_0).................3

f(1)=f(x_0)+\frac{f'(x_0)}{1}(1-x_0)+\frac{f''(\xi_2 )}{2}(1-x_0)^{2},\xi _1\in (x_0,1).........4

4-3得:f(1)-f(0)=\frac{f'(x_0)}{1}+\frac{1}{2}[f''(\xi _2)(1-x_0)^{2}-f''(\xi _1)x_0^2]

f'(x_0)跟题目要求的f'(x)好像有点相像,既然有可能那就先往下做了再说

f'(x_0)=f(1)-f(0)+\frac{1}{2}[f''(\xi _1)x_0^2-f''(\xi _2)(1-x_0)^{2}]

考虑一下如何把这个碍眼的x_0替换成题目需要的x(重点)

往定义上想,x_0是指代确定的x值,但是对于泰勒公式本身,x_0是可以在定义域上任取的,也就说对定义域上的任意x其实都有上式成立

也就说当x \in (0,1),都有f'(x)=f(1)-f(0)+\frac{1}{2}[f''(\xi _1)x^2-f''(\xi _2)(1-x)^{2}],这样一来x_0就成了题目需要的x

(这里只是为了便于讲解所以放到了后面讨论,写题时可以在写3、4式时直接把x_0写成x

对上式取绝对值\left | f'(x) \right |=\left | f(1)-f(0)+\frac{1}{2}[f''(\xi _1)x^2-f''(\xi _2)(1-x)^{2}] \right |

然后进行放缩:

\left | f'(x) \right |\leq \left | f(1)\right |+\left | f(0) \right |+\frac{1}{2}[\left | f''(\xi _1) \right |x^2+\left | f''(\xi _2) \right |(1-x)^{2}]

把题目给的小于等于条件代入继续放缩:

\left | f'(x) \right |\leq2a+\frac{b}{2}[ x^2+(1-x)^{2}]

由于[ x^2+(1-x)^{2}]\leq 2,继续代入放缩,证毕

这题比较难,还是按照一贯的思路来:因为告知导数所以优先猜测使用x_0,没用换成x,还是做不出来,继续代值考虑x_0x最后发现x可以一试。这题主要还是在于端点值也可以使用这一容易忽视的细节和如何将x_0考虑作整个定义域上的x值两个难点。


总结

对于泰勒公式题目,首先还是几个重要公式熟背,这样就可以解决大部分题目了。

证明题是泰勒公式的难点,一般使用定理二结合放缩就能解决了,关键在于如何选择xx_0,这是解决证明题的核心。

若有错误,欢迎大家批评斧正!

相关文章:

【数学】泰勒公式

目录 引言 一、泰勒公式 1.泰勒公式及推导 (1)推导 (2)公式 2.泰勒中值定理 (1)定理1(佩亚诺余项) (2)定理2(拉格朗日余项) …...

C++基础-编程练习题及答案

文章目录 前言一、查找“支撑数”二、数组元素的查找三、爬楼梯四、数字交换五、找高于平均分的人 前言 C基础-编程练习题和答案 一、查找“支撑数” 【试题描述】 在已知一组整数中, 有这样一种数非常怪, 它们不在第一个, 也不在最后一个&…...

eNSP-抓包解析HTTP、FTP、DNS协议

一、环境搭建 1.http服务器搭建 2.FTP服务器搭建 3.DNS服务器搭建 二、抓包 三、http协议 1.HTTP协议,建立在TCP协议之上 2.http请求 3.http响应 请求响应报文参考:https://it-chengzi.blog.csdn.net/article/details/113809803 4.浏览器开发者工具抓包…...

【栈】Leetcode 验证栈序列

题目讲解 946. 验证栈序列 算法讲解 在这里就只需要模拟一下这个栈的出栈顺序即可:使用一个stack,每次让pushed里面的元素入栈,如果当前栈顶的元素等于poped容器中的当前元素,因此就需要让栈顶元素出栈,poped的遍历…...

【数据库原理及应用】期末复习汇总高校期末真题试卷08

试卷 一、选择题(每题 2 分,共 30 分)    1. ___ ____是长期存储在计算机内的有组织,可共享的数据集合. A.数据库管理系统 B.数据库系统 C.数据库 D.文件组织 2. 数据库类型是按照 来划分…...

每天五分钟深度学习:数学中的极值

本文重点 在数学领域中,极值是一个极其重要的概念,它不仅在纯数学理论研究中占据核心地位,而且在工程、物理、经济等实际应用领域也发挥着不可替代的作用。极值问题涉及函数的最大值和最小值,是微积分学中的一个基本问题。本文旨在详细介绍数学中的极值概念、性质、求解方…...

【Linux】Linux——Centos7安装Tomcat

1.下载Tomcat 安装包 官网地址:Apache Tomcat - Apache Tomcat 9 Software Downloadshttps://tomcat.apache.org/download-90.cgi 2.将下载的安装包上传到 Xftp 上,我是直接放到 usr 下了 3.将安装包解压到 /usr/local/ tar -zxvf apache-tomcat-9.0.8…...

SpringBoot+vue实现右侧登录昵称展示

目录 1. 定义User数据 1.1.在created方法获取数据 1.2.头部导航栏绑定User数据 1.3.在data中定义User数据 2. 获取数据 2.1.接收父组件传递的值 2.2.展示数据 3. 页面效果 在SpringBoot和 Vue.js 结合的项目中实现右侧登录昵称展示,通常涉及到前端的用户界面…...

【网络原理】UDP协议 | UDP报文格式 | 校验和 | UDP的特点 | 应用层的自定义格式

文章目录 一、UDP协议1.UDP的传输流程发送方接收方 2.UDP协议报文格式:长度受限校验和如何校验:CRC算法:循环冗余算法md5算法: 2.UDP的特点 二、开发中常见的自定义格式1.xml(古老)2.json(最流行…...

NodeJs入门知识

**************************************************************************************************************************************************************************** 1、配置Node.js与npm下载(精力所致,必有精品) …...

代码随想录学习Day 34

62.不同路径 题目链接 讲解链接 动归五部曲: 1.确定dp数组及其下标的含义:dp[i][j]的含义是从(0, 0)走到(i, j)所需的步数; 2.确定递推公式:因为只能往右或者往下,所以dp[i][j] dp[i - 1][j] dp[i][j - 1]。 3.…...

由于找不到MSVCP120D.dll,无法继续执行代码。重新安装程序可能会解决此问题

由于找不到MSVCP120D.dll,无法继续执行代码。重新安装程序可能会解决此问题 一、问题详细描述二、问题产生背景三、问题原因四、解决办法1、安装缺少的库2、直接更换更高版本的opencv 五、vs版本对应vc1、版本对应2、vs对应vc查看方法 一、问题详细描述 同样可能会报 &#xff…...

【前端】输入时字符跳动动画实现

输入时字符跳动动画实现 在前端开发中,为了提升用户体验,我们经常需要为用户的交互行为提供即时的反馈。这不仅让用户知道他们的操作有了响应,还可以让整个界面看起来更加生动、有趣。本文将通过一个简单的例子讲解如何实现在用户输入字符时…...

C语言面试重点问题

1. 冒泡排序法 2. strlen、strcpy、strcat、strcmp的用法和原理 3. 大小端的区分 3.1 主函数区分大小端 #include <stdio.h>int main(void) {int num 0x11223344;char *p (char *)&num;if (0x11 *p){printf("大端!\n");}else if (0x44 *p){printf(…...

antlr4略解

文章目录 1. antlr4是用来干什么的&#xff1f;2. 什么是lexer和parser&#xff1f;3. 使用antlr4生成某语言的lexer和parser的具体过程4. 其他 1. antlr4是用来干什么的&#xff1f; 是用来生成某语言lexer和parser的。 通俗点说&#xff0c;就是输入一个语言的规则描述文件&…...

超级好用的C++实用库之文件目录操作

&#x1f4a1; 需要该C实用库源码的大佬们&#xff0c;可扫码关注文章末尾的微信公众号二维码&#xff0c;或搜索微信公众号“希望睿智”。添加关注后&#xff0c;输入消息“超级好用的C实用库”&#xff0c;即可获得源码的下载链接。 概述 文件和目录操作是操作系统层面上的基…...

结合kimi chat的爬虫实战思路

背景 想钻研一下项目组件&#xff0c;找找之后的学习方向。不能自以为是&#xff0c;所以借着网开源项目网站上公布的项目内容看一下&#xff0c;那些是我可以努力去学习的&#xff08;入门的&#xff09;。首先需要获取相关内容&#xff0c;于是爬取整理。 任务1&#xff1a…...

UnsupportedClassVersionError异常如何解决?

下面是异常报错的详细描述 java -version java version "17.0.11" 2024-04-16 LTS Java(TM) SE Runtime Environment (build 17.0.117-LTS-207) Java HotSpot(TM) 64-Bit Server VM (build 17.0.117-LTS-207, mixed mode, sharing) 环境变量已经是jdk17&#xff0c;但…...

LeetCode热题100|动态规划Part.1|70.爬楼梯、118.杨辉三角、198.打家劫舍

70.爬楼梯 代码随想录原题&#xff0c;看这篇文章&#xff1a;C动态规划Part.1|动态规划理论基础、509.斐波那契数、70.爬楼梯、746.使用最小花费爬楼梯 118.杨辉三角 题目链接&#xff1a;118.杨辉三角 一刷代码 时间复杂度和空间复杂度都造到 O ( n u m R o w s 2 ) O(num…...

python 根据网址和关键词批量下载影像

最近用到了GLASS的LAI产品&#xff0c;但这个产品的文件夹分得很细&#xff0c;我需要的影像又有8个瓦片&#xff0c;一个一个点击很麻烦&#xff0c;于是探索了批量下载的方法 一、下载1幅 import requests import re import os import requests import re# 网页URLurl &…...

爬虫-无限debug场景 解决方式

解决无限debug 场景1 1. 鼠标右键 选择 continue to here&#xff08;此处不停留&#xff09;2. 鼠标右键 选择 edite breakpoint 设置 10 保证条件不成立 这行永远不执行3.方法置空 1. 方法调用加断点2. 控制台 setInterval function name() {}4. 替换文件 5. hoo…...

[链表专题]力扣206, 203, 19

1. 力扣206 : 反转链表 (1). 题 : 图略 给你单链表的头节点 head &#xff0c;请你反转链表&#xff0c;并返回反转后的链表。示例 1&#xff1a;输入&#xff1a;head [1,2,3,4,5] 输出&#xff1a;[5,4,3,2,1] 示例 2&#xff1a;输入&#xff1a;head [1,2] 输出&#x…...

秋招后端开发面试题 - MySQL基础

目录 MySQL基础前言面试题MySQL 基础篇Mysql 的基础架构&#xff1f;MySQL 的长连接和短连接长连接引起的异常重启问题&#xff1f;说一下 MySQL 执行一条查询语句的内部执行过程&#xff1f;MySQL 查询缓存的功能有何优缺点&#xff1f;MySQL 的常用引擎都有哪些&#xff1f;I…...

力扣每日一题113:路径总和||

题目 中等 给你二叉树的根节点 root 和一个整数目标和 targetSum &#xff0c;找出所有 从根节点到叶子节点 路径总和等于给定目标和的路径。 叶子节点 是指没有子节点的节点。 示例 1&#xff1a; 输入&#xff1a;root [5,4,8,11,null,13,4,7,2,null,null,5,1], targetSu…...

Thinkphp5 中常见的session 操作方法

在 ThinkPHP 框架中&#xff0c;session 是用于在多个页面或请求之间存储用户信息的机制。以下是在 ThinkPHP 中进行 session 常见操作的一些示例&#xff1a; 启动 Session 在 ThinkPHP 中&#xff0c;通常不需要手动启动 Session&#xff0c;因为框架会在应用启动时自动处理…...

inBuilder 低代码平台新特性推荐 - 第十八期

今天来给大家带来的是inBuilder低代码平台特性推荐系列第十八期——表单设计器集成预约日历组件。 一、场景介绍 项目上希望用日历的形式展示某地点在一段时间内的预约记录&#xff0c;表单设计器新增支持创建日历预约视图&#xff0c;并配置预约属性。 二、运行效果 三、前…...

部署xwiki服务需要配置 hibernate.cfg.xml如何配置?

1. 定位 hibernate.cfg.xml 文件 首先&#xff0c;确保您可以在 Tomcat 的 XWiki 部署目录中找到 hibernate.cfg.xml 文件&#xff1a; cd /opt/tomcat/latest/webapps/xwiki/WEB-INF ls -l hibernate.cfg.xml如果文件存在&#xff0c;您可以继续编辑它。如果不存在&#xff…...

1376:信使(msner)

【解题思路】 每个哨所是一个顶点&#xff0c;哨所与哨所之间的通信线路为边&#xff0c;两哨所间通讯花费的时间为边的权值。记第一个哨所为顶点s&#xff0c;信息从第一个哨所传递到表示为顶点x的某哨所可能有多条路径&#xff0c;每条传送路径有一个花费的时间&…...

Hadoop3:HDFS的架构组成

一、官方文档 我这里学习的是Hadoop3.1.3版本&#xff0c;所以&#xff0c;查看的也是3.1.3版本的文档 Architecture模块最下面 二、HDFS架构介绍 HDFS架构的主要组成部分&#xff0c;是一下四个部分 1、NameNode(NN) 就是Master节点&#xff0c;它是集群管理者。 1、管…...

P2910 [USACO08OPEN] Clear And Present Danger S

Problem: P2910 [USACO08OPEN] Clear And Present Danger S 文章目录 思路解题方法复杂度Code 思路 这是一个图论问题&#xff0c;我们需要找到从一个城市到另一个城市的最短路径。我们可以使用Floyd-Warshall算法来解决这个问题。首先&#xff0c;我们需要构建一个距离矩阵&am…...