当前位置: 首页 > news >正文

Android NDK系列(五)内存监控

    在日常的开发中,内存泄漏是一种比较比较棘手的问题,这是由于其具有隐蔽性,即使发生了泄漏,很难检测到并且不好定位到哪里导致的泄漏。如果程序在运行的过程中不断出现内存泄漏,那么越来越多的内存得不到释放,可用的内存越来越小,最终导致系统无法正常运行。

    本文主要介绍一种能够检测内存的方法,方便在日常的开发过程中排除程序是否存在内存泄漏的情况。

    内存泄漏主要针对在堆区分配的内存无法得到释放,在堆区分配内存的方法有malloc和new,对应释放内存为free和delete。new和delete是针对C++的,本文主要监控通过new分配的内存的情况。

   new和delete是C++语言提供的运算符,在程序可以对这两个运算符进行重载,如下所示。


void * operator new(size_t size){void *ptr = malloc(size);LOGI("new size %d  ptr %p ",size, ptr);return ptr;
}void * operator new[](size_t size){void *ptr = malloc(size);LOGI("new array size %d ptr %p ",size, ptr);return ptr;
}void operator delete(void *ptr) {LOGI("delete pointer %p",ptr);if(ptr == nullptr) return;free(ptr);
}
void operator delete[](void *ptr) {LOGI("delete array %p",ptr);if(ptr == nullptr) return;free(ptr);
}

    上面重载了new、new[],delete和delete[]四个运算符,为了验证正常使用new和delete操作能够调用以上的运算符,下面定义一个简单的类

class MEM{
public:MEM(){LOGI("MEM constructor");}~MEM(){LOGI("MEM destructor");}
private:int a;
};

    这里定义MEM类并在构造函数和析构函数加了打印,主要为了验证它们是否会被调用,下面开始使用new和delete申请和释放内存,如下所示。

LOGI("new int---------");
int *p1 = new int(3);
LOGI("new int array---------");
int *p2 = new int[5];
LOGI("new MEM object---------");
MEM * p3 = new MEM();
LOGI("new MEM object array---------");
MEM * p4 = new MEM[5];LOGI("delete p1---------");
delete p1;
LOGI("delete p2---------");
delete []p2;
LOGI("delete p3---------");
delete p3;
LOGI("delete p4---------");
delete []p4;
LOGI("---------");

上面的测试代码流程如下:

new int(3) 请求分配一个整数

new int[5] 请求分配一个数组,大小为5

new MEM() 请求分配一个MEM类型的对象

new MEM[5] 请求分配一个MEM类型的数组,大小为5

最后调用delete分别释放以上分配的内存。运行以上代码,打印结果如下。

09:57:35.596 28994-29029 Native  I  new int---------
09:57:35.596 28994-29029 Native  I  new size 4  ptr 0xdc5191c0 
09:57:35.596 28994-29029 Native  I  new int array---------
09:57:35.596 28994-29029 Native  I  new array size 20 ptr 0xdc50ed60 
09:57:35.596 28994-29029 Native  I  new MEM object---------
09:57:35.596 28994-29029 Native  I  new size 4  ptr 0xdc5191c8 
09:57:35.596 28994-29029 Native  I  MEM constructor
09:57:35.596 28994-29029 Native  I  new MEM object array---------
09:57:35.596 28994-29029 Native  I  new array size 24 ptr 0xdc50edc0 
09:57:35.596 28994-29029 Native  I  MEM constructor
09:57:35.596 28994-29029 Native  I  MEM constructor
09:57:35.596 28994-29029 Native  I  delete p1---------
09:57:35.597 28994-29029 Native  I  delete pointer 0xdc5191c0
09:57:35.597 28994-29029 Native  I  delete p2---------
09:57:35.597 28994-29029 Native  I  delete array 0xdc50ed60
09:57:35.597 28994-29029 Native  I  delete p3---------
09:57:35.597 28994-29029 Native  I  MEM destructor
09:57:35.597 28994-29029 Native  I  delete pointer 0xdc5191c8
09:57:35.597 28994-29029 Native  I  delete p4---------
09:57:35.597 28994-29029 Native  I  MEM destructor
09:57:35.597 28994-29029 Native  I  MEM destructor
09:57:35.597 28994-29029 Native  I  delete array 0xdc50edc0
09:57:35.597 28994-29029 Native  I  ---------

    通过以上log可以看到,重载的运算符new、delete,构造函数和析构函数里都走进去了,说明重载运算符是可以接管分配和释放内存的工作的,而调用构造函数和析构函数还是由编译器处理了,无须担心创建对象和销毁对象时这两个函数没有被调用。

    尽管通过重载new和delete运算符可以接管内存的分配和释放工作,但是在new操作符函数中还是无法指定是谁申请的内存,为了能确定是哪里申请的内存,需要对new操作符进行改进,如下所示。

void * operator new(size_t size,const char * file, size_t line){LOGI("new size %d file: %s line %d",size, file, line);void *ptr = malloc(size);return ptr;
}void * operator new[](size_t size,const char * file, size_t line){LOGI("new array size %d file: %s line %d",size, file, line);void *ptr = malloc(size);return ptr;
}#define new new(__FILE__,__LINE__)

    上面重新定义了new操作符,加入了文件命和行号,并且把new定义为一个宏,调用new时自动加入文件名宏和行号宏,这样在代码中调用new申请内存时自动带上对应的文件名和行号。有了文件名和行号就能知道哪个地方申请的内存。

    为了统计当前系统内存的使用请求,接下来要把内存申请的记录保存起来,这里使用一个单链表对内存的申请信息进行保存,链表的元素使用Node表示,代码如下。


typedef struct Node{void *ptr;size_t size;char *file;size_t line;struct Node *next;
} Node;Node *head = nullptr;
void addRecord(void *ptr, size_t size, const char *file, size_t line){LOGI("addRecord");Node * node = (Node *)malloc(sizeof(Node));node->ptr = ptr;node->size = size;node->file = (char *)malloc(strlen(file)+1);strcpy(node->file,file);node->line = line;node->next= nullptr;if(head == nullptr){head = node;} else{node->next = head;head = node;}
}
void removeRecord(void *ptr){if(head == nullptr) return;Node *p = head;if(p->ptr == ptr){head = head->next;if(p->file != nullptr){free(p->file);}free(p);return;}Node * q = p->next;while (q != nullptr){if(q->ptr == ptr){p->next = q->next;if(q->file != nullptr){free(q->file);}free(q);return;}p = q;q = q->next;}
}void * operator new(size_t size,const char * file, size_t line){LOGI("new size %d file: %s line %d",size, file, line);void *ptr = malloc(size);if(ptr != nullptr){addRecord(ptr, size, file, line);}return ptr;
}void * operator new[](size_t size,const char * file, size_t line){LOGI("new array size %d file: %s line %d",size, file, line);void *ptr = malloc(size);if(ptr != nullptr){addRecord(ptr, size, file, line);}return ptr;
}void operator delete(void *ptr) {if(ptr == nullptr) return;removeRecord(ptr);free(ptr);
}
void operator delete[](void *ptr) {if(ptr == nullptr) return;removeRecord(ptr);free(ptr);
}#define new new(__FILE__,__LINE__)

    链表元素使用Node表示,Node包含了申请内存的地址,大小、文件名、行号以及下一个Node的地址。

   head表示链表头。

    addRecord向链表添加记录

    removeRecord根据指针从链表中释放对应的Node。

   new运算符申请内存后向链表添加记录,delete运算符从链表删除记录后再释放内存。

      有了保存内存信息的聊吧,可以统计当前内存的使用请求,下面实现统计当前内存使用情况的快照。

int showSnapshot(){LOGI("========Memory Snapshot Begin=========");int total = 0;Node *p = head;while (p != nullptr){total += p->size;LOGI("file %s line %d allocate size %d", p->file,p->line, p->size);p = p->next;}LOGI("total memory allocate is %d", total);LOGI("========Memory Snapshot End=========");return total;
}

     在showSnapshot中,先遍历链表打印当前内存的信息,最后打印当前申请的总的内存。下面再来打印上面的测试代码的内存快照,代码如下。

int *p1 = new int(3);int *p2 = new int[5];MEM * p3 = new MEM();MEM * p4 = new MEM[5];showSnapshot();delete p1;delete []p2;delete p3;delete []p4;

    在申请完所有的内存后,调用showSnapshot打印当前内存的申请情况,如下所示。

2024-05-29 10:11:47.489 29299-29334 Native                  com.example.memory.monitor           I  ========Memory Snapshot Begin=========
2024-05-29 10:11:47.489 29299-29334 Native                  com.example.memory.monitor           I  file D:/samples/Demos/AndroidSamples/Memroy/app/src/main/cpp/main.cpp line 213 allocate size 24
2024-05-29 10:11:47.489 29299-29334 Native                  com.example.memory.monitor           I  file D:/samples/Demos/AndroidSamples/Memroy/app/src/main/cpp/main.cpp line 212 allocate size 4
2024-05-29 10:11:47.489 29299-29334 Native                  com.example.memory.monitor           I  file D:/samples/Demos/AndroidSamples/Memroy/app/src/main/cpp/main.cpp line 211 allocate size 20
2024-05-29 10:11:47.489 29299-29334 Native                  com.example.memory.monitor           I  file D:/samples/Demos/AndroidSamples/Memroy/app/src/main/cpp/main.cpp line 210 allocate size 4
2024-05-29 10:11:47.489 29299-29334 Native                  com.example.memory.monitor           I  total memory allocate is 52
2024-05-29 10:11:47.489 29299-29334 Native                  com.example.memory.monitor           I  ========Memory Snapshot End=========

     从以上的快照可以看到当前内存的申请情况,通过这些信息可以排查某个文件的某一行申请的内存是否应该释放调,由此可以判断是否出现内存泄漏的情况。

   在平常的开发中,尽可能使用智能指针,减少显示通过new申请内存的情况,这样也可以避免内存泄漏。

本示例的工程已上传到github,链接为示例工程地址

相关文章:

Android NDK系列(五)内存监控

在日常的开发中,内存泄漏是一种比较比较棘手的问题,这是由于其具有隐蔽性,即使发生了泄漏,很难检测到并且不好定位到哪里导致的泄漏。如果程序在运行的过程中不断出现内存泄漏,那么越来越多的内存得不到释放&#xff0…...

软件设计师,下午题 ——试题六

模型图 简单工厂模式 工厂方法模式抽象工厂模式生成器模式原型模式适配器模式桥接模式组合模式装饰(器)模式亨元模式命令模式观察者模式状态模式策略模式访问者模式中介者模式 简单工厂模式 工厂方法模式 抽象工厂模式 生成器模式 原型模式 适配器模式 桥…...

《Kubernetes部署篇:基于麒麟V10+ARM64架构部署harbor v2.4.0镜像仓库》

总结:整理不易,如果对你有帮助,可否点赞关注一下? 更多详细内容请参考:企业级K8s集群运维实战 一、环境信息 K8S版本 操作系统 CPU架构 服务版本 1.26.15 Kylin Linux Advanced Server V10 ARM64 harbor v2.4.0 二、部…...

远程工作/线上兼职网站整理(数字游民友好)

文章目录 国外线上兼职网站fiverrupwork 国内线上兼职网站甜薪工场猪八戒网云队友 国外线上兼职网站 fiverr https://www.fiverr.com/start_selling?sourcetop_nav upwork https://www.upwork.com/ 国内线上兼职网站 甜薪工场 https://www.txgc.com/ 猪八戒网 云队友 …...

elasticsearch7.15实现用户输入自动补全

Elasticsearch Completion Suggester(补全建议) Elasticsearch7.15安装 官方文档 补全建议器提供了根据输入自动补全/搜索的功能。这是一个导航功能,引导用户在输入时找到相关结果,提高搜索精度。 理想情况下,自动补…...

掌握正则表达式的力量:全方位解析PCRE的基础与进阶技能

Perl 兼容正则表达式(PCRE)是 Perl scripting language 中所使用的正则表达式语法标准。这些正则表达式在 Linux 命令行工具(如 grep -P)及其他编程语言和工具中也有广泛应用。以下是一些基础和进阶特性,帮你掌握和使用…...

FastFM库,一款强大神奇的Python系统分析预测的工具

FastFM库概述 在机器学习领域,Factorization Machines(FM)是处理稀疏数据集中特征间交互的重要工具.Python的fastFM库提供了高效的实现,特别适合用于推荐系统、评分预测等任务.本文将全面介绍fastFM的安装、特性、基本和高级功能,并结合实际应用场景展示…...

R语言绘图 --- 饼状图(Biorplot 开发日志 --- 2)

「写在前面」 在科研数据分析中我们会重复地绘制一些图形,如果代码管理不当经常就会忘记之前绘图的代码。于是我计划开发一个 R 包(Biorplot),用来管理自己 R 语言绘图的代码。本系列文章用于记录 Biorplot 包开发日志。 相关链接…...

用于日常任务的实用 Python 脚本

Python 是一种多功能编程语言,以其简单易读而闻名。它广泛应用于从 Web 开发到数据分析等各个领域。Python 脚本,它们可以通过自动执行常见任务来使您的生活更轻松。 用于日常任务的实用 Python 脚本 1. 使用 Pandas 进行数据分析2. 使用 BeautifulSoup …...

7-Zip是什么呢

1. 简介 7-Zip 是一个功能强大、免费开源的文件压缩和解压缩工具,适用于个人用户和企业用户,可以在多种操作系统上进行使用,并且支持广泛的压缩格式和高级功能。 2. 特点与优势 开源免费:7-Zip 是免费的开源软件,可…...

Satellite Stereo Pipeline学习

1.在Anaconda某个环境中安装s2p pip install s2p 2.在Ubuntu系统中安装s2p源代码 git clone https://github.com/centreborelli/s2p.git --recursive cd s2p pip install -e ".[test]" 3.在s2p中进行make all处理 中间会有很多情况,基本上哪个包出问题…...

linux-gpio

在Linux shell中测试GPIO通信,通常需要使用GPIO的设备文件,这些文件通常位于/sys/class/gpio目录下。要使用特定的GPIO引脚,比如GPIO92,你需要执行以下步骤: 导出GPIO引脚:首先,需要确保GPIO92已…...

C# 代码配置的艺术

文章目录 1、代码配置的定义及其在软件工程中的作用2、C# 代码配置的基本概念和工具3、代码配置的实践步骤4、实现代码配置使用属性(Properties)使用配置文件(Config Files)使用依赖注入(Dependency Injection&#xf…...

268 基于matlab的模拟双滑块连杆机构运动

基于matlab的模拟双滑块连杆机构运动,并绘制运动动画,连杆轨迹可视化输出,并输出杆件质心轨迹、角速度、速度变化曲线。可定义杆长、滑块速度,滑块初始位置等参数。程序已调通,可直接运行。 268 双滑块连杆机构运动 连…...

进口铝合金电动隔膜泵

进口铝合金电动隔膜泵是一种高效、可靠的工业泵,其特点、性能与应用广泛,以下是对其的详细分析: 特点 材质与结构: 采用铝合金材料制造,具有良好的耐腐蚀性和轻量化特点。铝合金材质使得泵体结构紧凑、轻便&#xff…...

G4 - 可控手势生成 CGAN

🍨 本文为🔗365天深度学习训练营 中的学习记录博客🍖 原作者:K同学啊 目录 代码总结与心得 代码 关于CGAN的原理上节已经讲过,这次主要是编写代码加载上节训练后的模型来进行指定条件的生成 图像的生成其实只需要使用…...

使用 DuckDuckGo API 实现多种搜索功能

在日常生活中,我经常使用搜索引擎来查找信息,如谷歌和百度。然而,当我想通过 API 来实现这一功能时,会发现这些搜索引擎并没有提供足够的免费 API 服务。如果有这样的免费 API, 就能定时获取“关注实体”的相关内容,并…...

【DrissionPage爬虫库 1】两种模式分别爬取Gitee开源项目

文章目录 DrissionPage爬虫库简介1. 浏览器操控模式(类似于游戏中的后台模拟鼠标键盘)2. 数据包收发模式(类似于游戏中的协议封包) 实战中学习需求:爬取Gitee开源项目的标题与描述解决方案1:用数据包方式获…...

leetcode 115.不同的子序列

思路:LCS类dp 这道题的思考思路其实就是把以两个字符串结尾作为状态方程。 dp[i][j]的意义就是在s字符串在以s[i]结尾的字符串的情况下,所能匹配出t字符串以t[j]结尾的字符串个数。 本质上其实是一个LCS类的状态方程,只不过是意义不一样了…...

二叉树的顺序实现-堆

一、什么是堆 在数据结构中,堆(Heap)是一种特殊的树形数据结构,用数组存储,通常被用来实现优先队列。 堆具有以下特点: 堆是一棵完全二叉树(Complete Binary Tree),即…...

【Maven】Maven主要知识点目录整理

1. Maven的基本概念 作者相关文章链接: 1、【Maven】简介_下载安装-CSDN博客 定义:Maven是Apache的一个开源项目,是Java开发环境中用于管理和构建项目,以及维护依赖关系的强大软件项目管理工具。作用:简化了项目依赖…...

Coolmuster Android Assistant: 手机数据管理的全能助手

在数字化时代,智能手机不仅是通讯工具,更是个人数据的中心。随着数据量的不断增加,如何有效管理和保护这些数据成为了一个重要议题。Coolmuster Android Assistant应运而生,它是一款专为安卓用户设计的综合数据管理软件&#xff0…...

03-树3 Tree Traversals Again(浙大数据结构PTA习题)

03-树3 Tree Traversals Again 分数 25 作者 陈越 An inorder binary tree traversal can be implemented in a non-recursive way with a stack. For example, suppose that when a 6-node binary tree (with the keys numbered from 1 to 6) is traversed, th…...

Java项目对接redis,客户端是选Redisson、Lettuce还是Jedis?

JAVA项目对接redis,客户端是选Redisson、Lettuce还是Jedis? 一、客户端简介1. Jedis介绍2. Lettuce介绍3. Redisson介绍 二、横向对比三、选型说明 在实际的项目开发中,对于一个需要对接Redis的项目来说,就面临着选择合适的Redis客…...

AngularJS Web前端框架:深入探索与应用实践

AngularJS Web前端框架:深入探索与应用实践 AngularJS,作为一款强大的Web前端框架,为开发者提供了丰富的功能和工具,使得构建复杂且交互性强的Web应用变得更为便捷。本文将从四个方面、五个方面、六个方面和七个方面对AngularJS进…...

SQL 入门:使用 MySQL 进行数据库操作

SQL 入门:使用 MySQL 进行数据库操作 目录 引言SQL 基础 SQL 语言概述MySQL 简介 数据库设计基础 数据库与表的设计常见数据类型 MySQL 安装与配置 安装 MySQL基本配置与连接 基本 SQL 语句 数据库的创建与删除表的创建、修改与删除数据插入、更新与删除 数据查询…...

window安装ffmpeg播放本地摄像头视频

1、安装ffmpeg ffmpeg官方网站:FFmpeg 下载后解压文件夹名为ffmpeg 2、设置环境变量 目录 1、安装ffmpeg 设置环境变量 以F:\software\after\ffmpeg\bin为例 在命令行中输入ffmpeg出现下方代表安装成功 3、通过ffmpeg播放本地电脑摄像头 鼠标右击开始按钮&…...

【嵌入式DIY实例】-OLED显示网络时钟

OLED显示网络时钟 文章目录 OLED显示网络时钟1、硬件准备与接线2、代码实现在上一个ESP8266 NodeMCU文章中,我们用DS3231 RTC芯片和SSD1306 OLED制作了一个简单的实时时钟,时间和日期显示在SSD1306屏幕上,并且可以通过两个按钮进行设置。 在本中,我们将使用ESP 8266 NodeMC…...

【线程相关知识】

今日内容概要 开启线程的两种方式TCP服务端实现并发效果线程对象的join方法线程间数据共享线程对象属性及其他方法守护线程线程互斥锁GIL全局解释器锁多进程与多线程的实际应用场景 今日内容详细 开启线程的两种方式 # import time # from multiprocessing import Process #…...

鸿蒙ArkTS声明式开发:跨平台支持列表【透明度设置】 通用属性

透明度设置 设置组件的透明度。 说明: 开发前请熟悉鸿蒙开发指导文档: gitee.com/li-shizhen-skin/harmony-os/blob/master/README.md点击或者复制转到。 从API Version 7开始支持。后续版本如有新增内容,则采用上角标单独标记该内容的起始版…...

【SQL学习进阶】从入门到高级应用(九)

文章目录 子查询什么是子查询where后面使用子查询from后面使用子查询select后面使用子查询exists、not existsin和exists区别 union&union alllimit 🌈你好呀!我是 山顶风景独好 💕欢迎来到我的博客,很高兴能够在这里和您见面…...

Web前端三大主流框架技术分享

在当今快速发展的互联网时代,Web前端技术作为连接用户与服务的桥梁,其重要性不言而喻。随着技术的不断进步,为了提升开发效率、优化用户体验,一系列强大的前端框架应运而生。其中,Angular、React和Vue.js作为当前最为主…...

dockers安装mysql

1.dockerhub上搜索自己需要安装得镜像版本 dockerhub网址:https://hub-stage.docker.com docker pull mysql:5.7 #下载自己需要得版本2.启动容器实例,并且挂载容器数据卷 docker run -d -p 3306:3306 --privilegedtrue \ -v /home/mysql/log:/var/log/…...

100道面试必会算法-27-美团2024面试第一题-前缀和矩阵

100道面试必会算法-27-美团2024面试第一题-前缀和矩阵 问题解读 给定一个 n x n 的二进制矩阵,每个元素是 0 或 1。我们的任务是计算矩阵中所有边长为 k 的子矩阵中,包含特定数量 1 的情况。例如,我们希望找到所有边长为 k 的子矩阵中包含 k…...

从摇一摇到弹窗,AD无处不在?为了不再受打扰,推荐几款好用的屏蔽软件,让手机电脑更清爽

当我们沉浸在智能手机带来的便捷与乐趣中时,内置AD如同不速之客,时常打断我们的体验。 尤其是手机上那些“摇一摇”跳转,稍有不慎就会跳转到其他应用,令人不胜其烦。同样,电脑上的内置AD也如影随形,影响了我…...

HackTheBox-Machines--Nibbles

Nibbles 测试过程 1 信息收集 NMAP 80 端口 网站出了打印出“Hello world!”外,无其他可利用信息,但是查看网页源代码时,发现存在一个 /nibbleblog 文件夹 检查了 http://10.129.140.63/nibbleblog/ ,发现了 /index.p…...

东方博宜1703 - 小明买水果

问题描述 小明去超市买了若干斤水果,你能根据水果的单价,小明买的水果数量,编一个程序计算出总金额,并打印出清单。 输入 输入两个值, 第一个为商品的单价,是一个小数。 第二个为商品的数量,…...

mac电脑用谷歌浏览器对安卓手机H5页面进行inspect

1、mac上在谷歌浏览器上输入 chrome://inspect 并打开该页面。 2、连接安卓手机到Mac电脑:使用USB数据线将安卓手机连接到Mac电脑。 3、手机上打开要的h5页面 Webview下面选择要的页面,点击inspect,就能像谷歌浏览器页面打开下面的页面&#…...

动手学深度学习(Pytorch版)代码实践-深度学习基础-01基础函数的使用

01基础函数的使用 主要内容 张量操作:创建和操作张量,包括重塑、填充、逐元素操作等。数据处理:使用pandas加载和处理数据,包括处理缺失值和进行one-hot编码。线性代数:包括矩阵运算、求和、均值、点积和各种范数计算…...

vm-bhyve:bhyve虚拟机的管理系统@FreeBSD

先说情况,当前创建虚拟机后网络没有调通....不明白是最近自己点背,还是确实有难度... 缘起: 前段时间学习bhyve虚拟机,发现bvm这个虚拟机管理系统,但是实践下来发现网络方面好像有问题,至少我花了两天时间…...

【Java】刚刚!突然!紧急通知!垃圾回收!

【Java】刚刚!突然!紧急通知!垃圾回收! 文章目录 【Java】刚刚!突然!紧急通知!垃圾回收!从C语言的内存管理引入:手动回收Java的垃圾回收机制引用计数器循环引用问题 可达…...

[Algorithm][动态规划][子序列问题][最长递增子序列][摆动序列]详细讲解

目录 0.子序列 vs 子数组1.最长递增子序列1.题目链接2.算法原理详解3.代码实现 2.摆动序列1.题目链接2.题目链接3.代码实现 0.子序列 vs 子数组 子序列: 相对顺序是跟源字符串/数组是一致的但是元素和元素之间,在源字符串/数组中可以是不连续的一般时间…...

【稳定检索】2024年心理学与现代化教育、媒体国际会议(PMEM 2024)

2024年心理学与现代化教育、媒体国际会议 2024 International Conference on Psychology and Modern Education and Media 【1】会议简介 2024年心理学与现代化教育、媒体国际会议即将召开,这是一场汇聚全球心理学、教育及媒体领域精英的学术盛宴。 本次会议将深入探…...

深入了解diffusion model

diffusion model是如何运作的 会输入当时noise的严重程度,根据我们的输入来确定在第几个step,并做出不同的回应。 Denoise模组内部实际做的事情 产生一张图片和产生noise难度是不一样的,若denoise 模块产生一只带噪声的猫说明这个模块已经会…...

TransmittableThreadLocal原理

1、原理 TransmittableThreadLocal(简称TTL)是阿里巴巴开源的一个Java库,用于解决线程池中线程本地变量传递的问题。其底层原理主要是基于Java的ThreadLocal机制并对其进行扩展,以支持在父子线程间以及线程池中任务切换时&#x…...

华为昇腾310B初体验,OrangePi AIpro开发板使用测评

0、写在前面 很高兴收到官方的OrangePi AIpro开发板测试邀请,在过去的几年中,我在自己的博客写了一系列有关搭载嵌入式Linux系统的SBC(单板计算机)的博文,包括树莓派4系列、2K1000龙芯教育派、Radxa Rock5B、BeagleBo…...

GPTQ 量化大模型

GPTQ 量化大模型 GPTQ 算法 GPTQ 算法由 Frantar 等人 (2023) 提出,它从 OBQ 方法中汲取灵感,但进行了重大改进,可以将其扩展到(非常)大型的语言模型。 步骤 1:任意顺序量化 OBQ 方法选择权重按特定顺序…...

【GD32】05 - PWM 脉冲宽度调制

PWM PWM (Pulse Width Modulation) 是一种模拟信号电平的方法,它通过使用数字信号(通常是方波)来近似地表示模拟信号。在PWM中,信号的占空比(即高电平时间占整个周期的比例)被用来控制平均输出电压或电流。…...

JVM思维导图

帮助我们快速整理和总结JVM相关知识,有结构化认识和整体的思维模型 JVM相关详细知识和面试题...

Ollama+OpenWebUI+Phi3本地大模型入门

文章目录 Ollama+OpenWebUI+Phi3本地大模型入门一、基础环境二、Ollama三、OpenWebUI + Phi3Ollama+OpenWebUI+Phi3本地大模型入门 完全不懂大模型的请绕道,相信我李一舟的课程比较适合 Ollama提供大模型运行环境,OpenWebUI提供UI,Phi3就是那个大模型。 当然,Ollama支持超级…...