5.28.1 使用卷积神经网络检测乳腺癌
深度学习技术正在彻底改变医学图像分析领域,因此在本研究中,我们提出了卷积神经网络 (CNN) 用于乳腺肿块检测,以最大限度地减少手动分析的开销。CNN 架构专为特征提取阶段而设计,并采用了更快的 R-CNN 的区域提议网络 (RPN) 和感兴趣区域 (ROI) 部分,以实现乳腺肿块异常的自动检测。
模型可检测乳房 X 光检查 (MG) 图像中的肿块区域,并一次性将其分类为良性或恶性异常。对于所提出的模型,MG 图像是从本地的不同医院收集的。图像经过不同的预处理阶段,例如高斯滤波器、中值滤波器、双边滤波器,并从 MG 图像的背景中提取乳房区域。
1. 介绍
微钙化和肿块是乳腺癌的最早迹象,只能使用成像方式检测到。根据乳腺异常的侵袭阶段,异常可能是良性的或恶性的。与检测微钙化相比,检测乳房组织中的肿块更具挑战性。
Organization 等人 (2006) 的研究表明,种族、地理位置和其他风险因素会决定乳腺癌的发展。在这项工作中,我们提出了基于卷积神经网络 (CNN) 的乳腺肿块检测方法,以同时定位肿块并将其分类为良性或恶性异常。为了训练、验证和测试该方法,我们从不同站点收集了数据集。
2. 方法论
2.1 数据集
这项工作仅考虑了收集的 MG 图像中的肿块异常,即 1588 张具有肿块异常的完整乳房 X 射线图像,这些图像由专业放射科医生使用 labelMe Russell et al (2008) 注释工具进行注释。
2.2 方法
开发了基于 CNN 的乳腺肿块异常检测模型,该模型可自动检测肿块异常的感兴趣区域,并将其分类为 MG 图像中的良性或恶性。
对 INbreast Moreira 等人(2012 年)拍摄的 116 张完整 MG 图像和 CBIS-DDSM Lee 等人(2017 年)拍摄的 1380 张完整 MG 图像进行了预处理和增强,以便为训练我们的模型和本地收集的数据集提供初始权重。
2.2.1 数据收集
表 1 中描述的数据集是从埃塞俄比亚的不同医院收集的
2.2.2 MG图像预处理
为了提高数据质量并以适合深度学习训练的方式准备数据,对数据进行了预处理。为了消除图像中的噪声,应用了高斯滤波、中值滤波和双边滤波。随后使用对比度限制自适应直方图均衡化 (CLAHE) 增强图像,然后进行形态学操作和 OTSU 阈值处理,以从背景中提取乳房区域,并从 MG 中去除非乳房区域部分,例如伪影、标签、患者资料等。
2.2.3 模型训练
Bounding box regressor(边框回归器)在计算机视觉和目标检测中用于预测目标物体的边界框(Bounding Box)的位置和大小。其目标是从给定的物体位置(通常是一个初始边界框)开始,通过学习和预测修正值,使得模型能够准确地预测物体的边界框。这些修正值通常是相对于初始边界框的偏移量,包括水平偏移、垂直偏移、宽度缩放和高度缩放。
特征提取部分有一系列五个卷积层,每个卷积层分别有 (64, 128, 256, 512,512) 数量的卷积核。每个卷积层后面都是 Relu 激活层、批量归一化层、最大池化层和 dropout,但第二层除外,它既没有 dropout 也没有最大池化。
通过调整 Faster R-CNN Ren et al (2015) 的 ROI Pooling 部分的锚点边界框尺度、RPN 和最大池化的比率,它被用于检测肿块异常。我们使用了 9 个锚点,锚点框尺度分别为 32 × 32、64 × 64 和 128 × 128 像素,锚点框宽高比为 [1, 1]、[,
] 和 [
,
],ROI 最大池化大小为 (5,5)。
使用 0.9 动量、500 个 epoch、0.00001 学习率、RPN 的 Adam 和整个模型的随机梯度下降 (SGD) 作为优化器。所提出的模型是使用 Python 和 Keras 实现的,其中 Tensorflow 用作后端。
3. 结果与讨论
描述了一种基于 CNN 的方法,用于检测肿块区域并将其分为良性和恶性。研究了在本地多中心 MG 数据集中一次性检测、定位肿块异常并将其分类为良性或恶性。很难将我们的检测结果与以前的本地研究直接进行比较。因此,我们对基于 VGG 的更快 R-CNN Ren et al (2015) 架构进行了训练、验证和测试,以便使用收集到的数据集与我们模型的性能进行比较。在收集到的所有图像中,选择了 1588 张包含肿块异常的完整 MG 图像,然后由专业放射科医生使用 labelMeRussell et al (2008) 注释工具对其进行注释。在 1588 张 MG 图像中,有 1683 个乳腺肿块异常。数据集被随机分成 80% 用于训练、10% 用于验证和 10% 用于测试。
对 INbreast Moreira 等人(2012 年)、CBIS-DDIS Lee 等人(2017 年)执行了相同的流水线预处理,并为所提出的模型和基于 VGG 的Faster R-CNN 收集了本地 MG 数据集。
在预处理阶段:将不同的成像格式(例如 DICOM 医学图像格式)转换为 .png 图像格式,去除噪音,从背景中提取乳房区域,删除患者信息,清除伪影和其他不需要的物体。分别使用 3×3 和 5×5 大小的高斯、中等和横向滤波器进行降噪,并使用 MSE 评估去噪结果。在考虑的两种卷积核尺寸中,最终使用了 3×3 大小的卷积核。此外,使用 CLAHE 增强去噪后的 MG 图像,然后提取乳房区域并使用 OTSU 和形态学操作去除不需要的伪影。
相关文章:

5.28.1 使用卷积神经网络检测乳腺癌
深度学习技术正在彻底改变医学图像分析领域,因此在本研究中,我们提出了卷积神经网络 (CNN) 用于乳腺肿块检测,以最大限度地减少手动分析的开销。CNN 架构专为特征提取阶段而设计,并采用了更快的 R-CNN 的区域提议网络 (RPN) 和感兴…...

【JavaScript脚本宇宙】JavaScript日期处理神器: 6款顶级库解析
提升编程效率:六个强大的JavaScript日期时间库介绍 前言 在信息化社会,日期和时间的处理是任何编程语言必不可少的部分。本文将介绍六个优秀的JavaScript日期和时间库,这些库各有特色,可以应对多样的使用场景。 欢迎订阅专栏&am…...

C++基础编程100题-002 OpenJudge-1.1-04 输出保留3位小数的浮点数
更多资源请关注纽扣编程微信公众号 002 OpenJudge-1.1-04 输出保留3位小数的浮点数 http://noi.openjudge.cn/ch0101/04/ 描述 读入一个单精度浮点数,保留3位小数输出这个浮点数。 输入 只有一行,一个单精度浮点数。 输出 也只有一行,…...

Linux挂载硬盘
通过df -h命令后无硬盘信息,但是已经分配了硬盘,需要将硬盘挂载到主机上。 通过命令:lsblk NAME MAJ:MIN RM SIZE RO TYPE MOUNTPOINT sr0 11:0 1 492K 0 rom vda 252:0 0 50G 0 disk …...

用户购物性别模型标签(USG)之决策树模型
一、USG模型引入: 首先了解一下,如何通过大数据来确定用户的真实性别, 经常谈论的用户精细化运营,到底是什么? 简单来讲,就是将网站的每个用户标签化,制作一个属于用户自己的网络身份证。然后,运营人员 通…...

Mock的用法
1. 引入unittest包,再从包里引用mock类 import unittest from unittest import Mock 2. mock的作用,做挡板或者用来做一些单元测试过程中复杂的数据的模拟 demo Demo() #把mock的值赋值给demo的get()方法,这样在调用这个方法时࿰…...

内网-win1
一、概述 1、工作组:将不同的计算机按功能(或部门)分别列入不同的工作组 (1)、查看(windows) 查看当前系统中所有用户组:打开命令行--》net localgroup查看组中用户:打开命令行 --》net localgroup 后接组名查看用户…...

中国电子学会(CEIT)2023年09月真题C语言软件编程等级考试三级(含详细解析答案)
中国电子学会(CEIT)考评中心历届真题(含解析答案) C语言软件编程等级考试三级 2023年09月 编程题五道 总分:100分一、谁是你的潜在朋友(20分) "臭味相投"一这是我们描述朋友时喜欢用的词汇。两个人是朋友通常意味着他们存在着 许多共同的兴趣。然而作为…...

golang线程池ants-四种使用方法
目录 1、ants介绍 2、使用方式汇总 3、各种使用方式详解 3.1 默认池 3.2 普通模式 3.3 带参函数 3.4 多池多协程 4、总结 1、ants介绍 众所周知,goroutine相比于线程来说,更加轻量、资源占用更少、无线程上下文切换等优势,但是也不能…...

Flutter开发效率提升1000%,Flutter Quick教程之对组件进行拖拽与接收
1,首先,所有可以选择的组件,都在左边的组件面板里。从里面点击任何一个,按住左键,向右边的手机面板上进行拖拽即可。 2,拖拽后,我们要选择一个接收组件。什么时候可以接收组件,就是当…...

揭秘小程序商城的团购奇迹:独特模式引领盈利新纪元
在数字经济的新纪元里,你是否对那些不张扬却充满潜力的商业模式心生好奇?今天,我要为你揭示一种别出心裁的商业模式,它以其独特的魅力,不仅迅速吸引了大量用户的目光,更在短短一个月内创造了超过600万的惊人…...

ssm_mysql_高校自习室预约系统(源码)
博主介绍:✌程序员徐师兄、8年大厂程序员经历。全网粉丝15w、csdn博客专家、掘金/华为云/阿里云/InfoQ等平台优质作者、专注于Java技术领域和毕业项目实战✌ 🍅文末获取源码联系🍅 👇🏻 精彩专栏推荐订阅👇…...

AI自动化办公:批量将Excel表格英文内容翻译为中文
有一个50列的表格,里面都是英文,要翻译成中文: 在ChatGPT中输入提示词: 你是一个开发AI大模型应用的Python编程专家,要完成以下任务的Python脚本: 打开Excel文件:"F:\AI自媒体内容\AI行业…...

PPT 隐藏开启对象图层
目录预览 一、问题描述二、解决方案三、参考链接 一、问题描述 制作PPT的时候,有时候需要在一张PPT放置多个依次出现的内容,然后设置对应的动画,要是需要对某个内容进行修改的话,就会很不方便,这个时候就需要使用&…...

PHP火狼大灌篮游戏源码微信+手机wap源码带控制
使用此接口可以实现支付宝、QQ钱包、微信支付与财付通的即时到账,免签约,无需企业认证。PHP易支付源码,免签约不需要企业的支付平台源码,彩虹第三四方在线支付系统源码,易支付token合作者商户申请源码,app和网页都可以…...

推荐几首听无数遍也听不腻的好歌(1)
1.Wannabe (Spice Girls Cover) 这首歌是Why Mona创作的首红眼特效的歌,唱的像牙痛的唱不清楚,但配上超级劲爆的旋律及节奏,简直好听到爆 2.Down For Life (Reset) 这首HSHK创作的纯音乐,虽然旋律一直重复一个调,但…...

【全开源】Java短剧系统微信小程序+H5+微信公众号+APP 源码
打造属于你的精彩短视频平台 一、引言:为何选择短剧系统小程序? 在当今数字化时代,短视频已经成为人们日常生活中不可或缺的一部分。而短剧系统小程序源码,作为构建短视频平台的强大工具,为广大开发者提供了快速搭建…...

基于Springboot驾校预约平台小程序的设计与实现(源码+数据库+文档)
一.项目介绍 系统角色:管理员、教练、学员 小程序(仅限于学员注册、登录): 查看管理员发布的公告信息 查看管理员发布的驾校信息 查看所有教练信息、预约(需教练审核)、评论、收藏喜欢的教练 查看管理员发布的考试信息、预约考试(需管理…...

python列表基本运算
列表基本运算 成员运算符 in 老师你在上课喊人回答问题的时候,就犯了难。想点的人名字已经脱口而出了,但发现这位同学没来。 可不,今天的课就来了 8 个人: students [林黛玉, 薛宝钗, 贾元春, 妙玉, 贾惜春, 王熙凤, 秦可卿,…...

Pytorch实用教程:pytorch中nn.Linear()用法详解 | 构建多层感知机 | nn.Module的作用 | nn.Sequential的作用
文章目录 1. nn.Linear()用法构造函数参数示例使用场景2. 构建多层感知机步骤代码示例注意事项3. 继承自nn.Module的作用是什么?1. 组织网络结构2. 参数管理3. 模型保存和加载4. 设备管理不继承 `nn.Module` 的后果...

如何利用unicloud阿里云云函数实现文件包括图片或文件上传,unicloud云函数写法一览
这里以一个单文件上传为例子,多图多文件同理,循环单图处理逻辑即可。 背景 前端vue上传图片文件(base64格式)到服务器,并获取返回的服务器资源存储路径 传入参数 { ”queryStringParameters“:{ "file":&qu…...

Django序列化器中is_valid和validate
今天上班的时候分配了一个任务,是修复前端的一个提示优化,如下图所示: 按照以往的经验我以为可以直接在validate上进行校验,如何抛出一个异常即可 ,例如: class CcmSerializer(serializers.ModelSerialize…...

关于Golang中自定义包的简单使用-Go Mod
1. go env 查看 GO111MODULE 是否为 on,不是修改成on go env -w GO111MODULEon 2 .自定义包的目录格式 3. test.go 内容 package calc func Add(x, y int) int { // 首字母大写表示公有方法return x y }func Sub(x, y int) int {return x - y } 4.生成calc目…...

Dijkstra求最短路篇二(全网最详细讲解两种方法,适合小白)(python,其他语言也适用)
前言: Dijkstra算法博客讲解分为两篇讲解,这两篇博客对所有有难点的问题都会讲解,小白也能很好理解。看完这两篇博客后保证收获满满。 第一篇博客讲解朴素Dijkstra算法Dijkstra求最短路篇一(全网最详细讲解两种方法,适合小白)(p…...

Dijkstra求最短路篇一(全网最详细讲解两种方法,适合小白)(python,其他语言也适用)
前言: Dijkstra算法博客讲解分为两篇讲解,这两篇博客对所有有难点的问题都会讲解,小白也能很好理解。看完这两篇博客后保证收获满满。 本篇博客讲解朴素Dijkstra算法,第二篇博客讲解堆优化Dijkstra算法Dijkstra求最短路篇二(全网…...

计算机组成原理06:浮点数运算
浮点数加减运算 之前我们提到过,浮点数具有特定的表示形式。因此,在进行浮点数的加减运算之前,需要统一浮点数的表达方式。这里我们主要对浮点数表示中的尾数M进行处理,要求0≤M<1,统一格式如下: 正数…...

opencascade 快速显示AIS_ConnectedInteractive源码学习
AIS_ConcentricRelation typedef PrsDim_ConcentricRelation AIS_ConcentricRelation AIS_ConnectedInteractive 简介 创建一个任意位置的另一个交互对象实例作为参考。这允许您使用连接的交互对象,而无需重新计算其表示、选择或图形结构。这些属性是从您的参考对…...

CentOS系统上安装单机版Redis教程
一、前言 1.1 为什么选择Redis? Redis不仅支持丰富的数据类型(如字符串、哈希、列表、集合、有序集合等),还具有高性能、持久化、发布订阅、事务和Lua脚本等特点。这些优势使其成为分布式系统和高并发应用中的首选。 1.2 为什么…...

纯Java实现Google地图的KMZ和KML文件的解析
目录 前言 一、关于KMZ和KML 1、KMZ是什么 2、KML是什么 二、Java解析实例 1、POM.xml引用 2、KML 基类定义 3、空间对象的定义 4、Kml解析工具类 三、KML文件的解析 1、KML解析测试 2、KMZ解析测试 四、总结 前言 今天是六.一儿童节,在这里祝各位大朋友…...

k8s自定义资源你会创建吗
创建自定义资源定义 CustomResourceDefinition 当你创建新的 CustomResourceDefinition(CRD)时,Kubernetes API 服务器会为你所 指定的每一个版本生成一个 RESTful 的 资源路径。CRD 可以是名字空间作用域的,也可以是集群作用域的…...