当前位置: 首页 > news >正文

opencv进阶 ——(九)图像处理之人脸修复祛马赛克算法CodeFormer

算法简介

CodeFormer是一种基于AI技术深度学习的人脸复原模型,由南洋理工大学和商汤科技联合研究中心联合开发,它能够接收模糊或马赛克图像作为输入,并生成更清晰的原始图像。算法源码地址:https://github.com/sczhou/CodeFormer

Face Restoration

Face Color Enhancement and Restoration

Face Inpainting

模型部署

        如果想用C++进行模型推理部署,首先要把模型转换成onnx,转成onnx就可以使用onnxruntime c++库进行部署,或者使用OpenCV的DNN也可以。

        1、可在以下地址下载模型:https://github.com/sczhou/CodeFormer/releases/tag/v0.1.0

        2、下载CodeFormer源码,在工程目录下添加onnx转换python代码

import torch
from basicsr.utils.registry import ARCH_REGISTRYif __name__ == '__main__':device = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu')net = ARCH_REGISTRY.get('CodeFormer')(dim_embd=512, codebook_size=1024, n_head=8, n_layers=9, connect_list=['32', '64', '128', '256']).to(device)# ckpt_path = 'weights/CodeFormer/codeformer.pth'ckpt_path = './codeformer.pth'checkpoint = torch.load(ckpt_path)['params_ema']net.load_state_dict(checkpoint)net.eval()input_tensor = torch.zeros((1, 3, 512, 512)).to(device)torch.onnx.export(net,  # 模型实例input_tensor,  # 输入张量"./codeformer.onnx",  # 输出的ONNX模型路径export_params=True,  # 是否包含模型参数opset_version=11,  # ONNX操作集版本do_constant_folding=True,  # 是否进行常量折叠优化input_names=['input'],  # 输入名称output_names=['output'],  # 输出名称dynamic_axes={'input': {0: 'batch_size'}, 'output': {0: 'batch_size'}}  # 声明动态轴)

        3、采用onnxruntime加载模型,示例代码如下

#define _CRT_SECURE_NO_WARNINGS
#include <iostream>
#include <fstream>
#include <numeric>
#include <opencv2/imgproc.hpp>
#include <opencv2/highgui.hpp>
//#include <cuda_provider_factory.h>  ///nvidia-cuda加速
#include <onnxruntime_cxx_api.h>using namespace cv;
using namespace std;
using namespace Ort;class CodeFormer
{
public:CodeFormer(string modelpath);Mat detect(Mat cv_image);
private:void preprocess(Mat srcimg);vector<float> input_image_;vector<double> input2_tensor;int inpWidth;int inpHeight;int outWidth;int outHeight;float min_max[2] = { -1,1 };//存储初始化获得的可执行网络Env env = Env(ORT_LOGGING_LEVEL_ERROR, "CodeFormer");Ort::Session *ort_session = nullptr;SessionOptions sessionOptions = SessionOptions();vector<char*> input_names;vector<char*> output_names;vector<vector<int64_t>> input_node_dims; // >=1 outputsvector<vector<int64_t>> output_node_dims; // >=1 outputs
};CodeFormer::CodeFormer(string model_path)
{//OrtStatus* status = OrtSessionOptionsAppendExecutionProvider_CUDA(sessionOptions, 0);  ///nvidia-cuda加速sessionOptions.SetGraphOptimizationLevel(ORT_ENABLE_BASIC);std::wstring widestr = std::wstring(model_path.begin(), model_path.end());   ///如果在windows系统就这么写ort_session = new Session(env, widestr.c_str(), sessionOptions);   ///如果在windows系统就这么写///ort_session = new Session(env, model_path.c_str(), sessionOptions);  ///如果在linux系统,就这么写size_t numInputNodes = ort_session->GetInputCount();size_t numOutputNodes = ort_session->GetOutputCount();AllocatorWithDefaultOptions allocator;for (int i = 0; i < numInputNodes; i++){input_names.push_back(ort_session->GetInputName(i, allocator));Ort::TypeInfo input_type_info = ort_session->GetInputTypeInfo(i);auto input_tensor_info = input_type_info.GetTensorTypeAndShapeInfo();auto input_dims = input_tensor_info.GetShape();input_node_dims.push_back(input_dims);}for (int i = 0; i < numOutputNodes; i++){output_names.push_back(ort_session->GetOutputName(i, allocator));Ort::TypeInfo output_type_info = ort_session->GetOutputTypeInfo(i);auto output_tensor_info = output_type_info.GetTensorTypeAndShapeInfo();auto output_dims = output_tensor_info.GetShape();output_node_dims.push_back(output_dims);}this->inpHeight = input_node_dims[0][2];this->inpWidth = input_node_dims[0][3];this->outHeight = output_node_dims[0][2];this->outWidth = output_node_dims[0][3];input2_tensor.push_back(0.5);
}void CodeFormer::preprocess(Mat srcimg)
{Mat dstimg;cvtColor(srcimg, dstimg, COLOR_BGR2RGB);resize(dstimg, dstimg, Size(this->inpWidth, this->inpHeight), INTER_LINEAR);this->input_image_.resize(this->inpWidth * this->inpHeight * dstimg.channels());int k = 0;for (int c = 0; c < 3; c++){for (int i = 0; i < this->inpHeight; i++){for (int j = 0; j < this->inpWidth; j++){float pix = dstimg.ptr<uchar>(i)[j * 3 + c];this->input_image_[k] = (pix / 255.0 - 0.5) / 0.5;k++;}}}
}Mat CodeFormer::detect(Mat srcimg)
{int im_h = srcimg.rows;int im_w = srcimg.cols;this->preprocess(srcimg);array<int64_t, 4> input_shape_{ 1, 3, this->inpHeight, this->inpWidth };vector<int64_t> input2_shape_ = { 1 };auto allocator_info = MemoryInfo::CreateCpu(OrtDeviceAllocator, OrtMemTypeCPU);vector<Value> ort_inputs;ort_inputs.push_back(Value::CreateTensor<float>(allocator_info, input_image_.data(), input_image_.size(), input_shape_.data(), input_shape_.size()));ort_inputs.push_back(Value::CreateTensor<double>(allocator_info, input2_tensor.data(), input2_tensor.size(), input2_shape_.data(), input2_shape_.size()));vector<Value> ort_outputs = ort_session->Run(RunOptions{ nullptr }, input_names.data(), ort_inputs.data(), ort_inputs.size(), output_names.data(), output_names.size());post_processfloat* pred = ort_outputs[0].GetTensorMutableData<float>();//Mat mask(outHeight, outWidth, CV_32FC3, pred); /经过试验,直接这样赋值,是不行的const unsigned int channel_step = outHeight * outWidth;vector<Mat> channel_mats;Mat rmat(outHeight, outWidth, CV_32FC1, pred); // RMat gmat(outHeight, outWidth, CV_32FC1, pred + channel_step); // GMat bmat(outHeight, outWidth, CV_32FC1, pred + 2 * channel_step); // Bchannel_mats.push_back(rmat);channel_mats.push_back(gmat);channel_mats.push_back(bmat);Mat mask;merge(channel_mats, mask); // CV_32FC3 allocated///不用for循环遍历Mat里的每个像素值,实现numpy.clip函数mask.setTo(this->min_max[0], mask < this->min_max[0]);mask.setTo(this->min_max[1], mask > this->min_max[1]);   也可以用threshold函数,阈值类型THRESH_TOZERO_INVmask = (mask - this->min_max[0]) / (this->min_max[1] - this->min_max[0]);mask *= 255.0;mask.convertTo(mask, CV_8UC3);cvtColor(mask, mask, COLOR_BGR2RGB);return mask;
}int main()
{CodeFormer mynet("codeformer.onnx");string imgpath = "input.png";Mat srcimg = imread(imgpath);Mat dstimg = mynet.detect(srcimg);resize(dstimg, dstimg, Size(srcimg.cols, srcimg.rows), INTER_LINEAR);//imwrite("result.jpg", dstimg)namedWindow("srcimg", WINDOW_NORMAL);imshow("srcimg", srcimg);namedWindow("dstimg", WINDOW_NORMAL);imshow("dstimg", dstimg);waitKey(0);destroyAllWindows();
}

效果展示

面部恢复

面部色彩增强与恢复

面部修复

破旧照片修复效果

相关文章:

opencv进阶 ——(九)图像处理之人脸修复祛马赛克算法CodeFormer

算法简介 CodeFormer是一种基于AI技术深度学习的人脸复原模型&#xff0c;由南洋理工大学和商汤科技联合研究中心联合开发&#xff0c;它能够接收模糊或马赛克图像作为输入&#xff0c;并生成更清晰的原始图像。算法源码地址&#xff1a;https://github.com/sczhou/CodeFormer…...

虚拟机改IP地址

使用场景&#xff1a;当你从另一台电脑复制一个VMware虚拟机过来&#xff0c;就是遇到一个问题&#xff0c;虚拟的IP地址不一样&#xff08;比如&#xff0c;一个是192.168.1.3&#xff0c;另一个是192.168.2.4&#xff0c;由于‘1’和‘2’不同&#xff0c;不是同一网段&#…...

MySQL(二)-基础操作

一、约束 有时候&#xff0c;数据库中数据是有约束的&#xff0c;比如 性别列&#xff0c;你不能填一些奇奇怪怪的数据~ 如果靠人为的来对数据进行检索约束的话&#xff0c;肯定是不行的&#xff0c;人肯定会犯错~因此就需要让计算机对插入的数据进行约束要求&#xff01; 约…...

vue3学习使用笔记

1.学习参考资料 vue3菜鸟教程&#xff1a;https://www.runoob.com/vue3/vue3-tutorial.html 官方网站&#xff1a;https://cn.vuejs.org/ 中文文档: https://cn.vuejs.org/guide/introduction.html Webpack 入门教程&#xff1a;https://www.runoob.com/w3cnote/webpack-tutor…...

微信小程序怎么进行页面传参

微信小程序页面传参的方式有多种&#xff0c;每种方式都有其特定的使用场景和优势。以下是几种常见的页面传参方式&#xff0c;以及它们的具体使用方法和示例&#xff1a; URL参数传值 原理&#xff1a;通过在跳转链接中附加参数&#xff0c;在目标页面的onLoad函数中获取参数…...

隆道出席河南ClO社区十周年庆典,助推采购和供应链数字化发展

5月26日&#xff0c;“河南ClO社区十周年庆典”活动在郑州举办&#xff0c;北京隆道网络科技有限公司总裁助理姚锐出席本次活动&#xff0c;并发表主题演讲《数字化采购与供应链&#xff1a;隆道的探索与实践》&#xff0c;分享隆道公司在采购和供应链数字化转型方面的研究成果…...

NetApp财季报告亮点:全闪存阵列需求强劲,云计算收入增长放缓但AI领域前景乐观

在最新的财季报告中&#xff0c;NetApp的收入因全闪存阵列的强劲需求而显著增长。截至2024年4月26日的2024财年第四季度&#xff0c;NetApp的收入连续第三个季度上升&#xff0c;达到了16.7亿美元&#xff0c;较前一年同期增长6%&#xff0c;超出公司指导中值。净利润为2.91亿美…...

javascript读取本地目录

在JavaScript中&#xff0c;直接读取本地目录的能力受到浏览器安全限制&#xff0c;因为出于隐私和安全考虑&#xff0c;浏览器的JavaScript环境通常不允许直接访问用户的文件系统。然而&#xff0c;随着Web技术的发展&#xff0c;一些现代浏览器引入了File System API或Web Fi…...

Java基础八股

Java基础八股 Java语言Java语言有什么特点Java与C区别Java如何实现跨平台JVMvsJDKvsJRE标识符和关键字的区别是什么自增自减运算符移位运算符continue,break,return的区别是什么final,finally,finalize的区别final关键字的作用时什么 变量 Java语言 Java语言有什么特点 Java是…...

【机器学习300问】102、什么是混淆矩阵?

一、混淆矩阵的定义 混淆矩阵是一种用于评估分类模型性能的评估指标。当模型对数据进行预测并将数据分配到预定义的类别时&#xff0c;混淆矩阵提供了一种直观的方式来总结这些预测与数据实际类别之间的对应关系。具体来说&#xff0c;它是一个表格。 二、分类模型性能评估一级…...

基于SpringBoot3和JDK17,集成H2数据库和jpa

基于SpringBoot3和JDK17&#xff0c;集成H2数据库和jpa 学会用H2数据库&#xff0c;为了快速写出需要处理数据关系的demo。 文章目录 基于SpringBoot3和JDK17&#xff0c;集成H2数据库和jpa工程配置pom.xml文件application.properties文件 练习H2数据库的操作h2数据库的建表自…...

《逆水寒》手游周年庆,热度不减反增引发热议

易采游戏网5月31日最新消息&#xff1a;随着数字娱乐时代的飞速发展&#xff0c;手游市场的竞争愈发激烈。在这样的大背景下&#xff0c;《逆水寒》手游以其独特的古风武侠世界和深度的社交体验&#xff0c;自上线以来便吸引了无数玩家的目光。如今&#xff0c;这款游戏迎来了它…...

Kotlin使用Dagger2但无法生成对应类 Unresolved reference: DaggerMyComponent

最近在使用Dagger2时&#xff0c;遇到这个错误&#xff0c;app/build/generated/source/没有生成对应类&#xff0c;没有生成如下类&#xff0c;网上看了许多博客替换版本&#xff0c;添加dagger2的其他依赖均未成功&#xff0c;最终看到一篇大佬的文章才终于得以解决 解决&am…...

Vue组件通讯⽗组件中通过 provide 来提供变量,然后在⼦组件中通过 inject 来注⼊变量例子

在Vue中&#xff0c;provide 和 inject 主要用于依赖注入&#xff0c;允许祖先组件向其所有子孙组件提供一个依赖&#xff0c;而不论组件层次有多深。这在开发高阶插件/组件库时特别有用。 以下是一个简单的例子&#xff0c;演示了如何在父组件中使用 provide 提供变量&#x…...

教你搞一个比较简单的计时和进度条装饰器

教你搞一个比较简单的计时和进度条装饰器 什么是装饰器为啥要用装饰器呢&#xff1f;上代码&#xff01;如何使用装饰器效果 什么是装饰器 装饰器的英文是&#xff1a;Decorator。装修的英文是&#xff1a;Decoration。顾名思义就是我们要用装饰器在函数func()上搞点儿事儿&am…...

跑马灯的两种实现方式

方式一&#xff1a;利用元素尺寸变化监听api&#xff0c;计算宽度&#xff0c;得出时间&#xff0c;进行无限次数动画。 优点&#xff1a;能自定义速度&#xff08;0 - 1&#xff09;。 <template><div class"box"><i class"iconfont icon-gon…...

OpenAI 的 GPT-4o 是目前最先进的人工智能模型!如何在工作或日常生活中高效利用它?

OpenAI 的 GPT-4o 是目前最先进的人工智能模型&#xff01;如何在工作或日常生活中高效利用它&#xff1f; 博主猫头虎的技术世界 &#x1f31f; 欢迎来到猫头虎的博客 — 探索技术的无限可能&#xff01; 专栏链接&#xff1a; &#x1f517; 精选专栏&#xff1a; 《面试题大…...

安卓ANR检测、分析、优化面面谈

前言 一个引发讨论的楔子&#xff0c;以下三种现象有什么区别&#xff1a; App停止运行App暂无响应App闪退 答案&#xff1a; 产生原因不同&#xff1a;停止运行是UNCheckExceptionError暂无响应是ANRDialog闪退是CheckExceptionError 本文讨论的主题是ANR的定义、分类、复现…...

“手撕”链表的九道OJ习题

目录 1. 第一题 2. 第二题 3. 第三题 4. 第四题 5. 第五题 6. 第六题 7. 第七题 8. 第八题 9. 第九题 1. 第一题 删除链表中等于给定值 val 的所有节点。OJ链接 思路如下&#xff1a; 相当于链表的removeAll();制定prev和cur&#xff0c;prev记录前一个节点&#xff…...

解决 Git commit 或 Git merge 跑到 VIM 里面去了

像 git commit 分支名字 或 git merge 分支名字这个命令后面最好加上 -m "消息"&#xff0c;如果你不加上 -m "消息"的话&#xff0c;它会打开一个程序让你去加上消息&#xff0c;这个程序还是在控制台里面&#xff0c;只不过是 Linux 里面一个叫做 VIM 的…...

连锁超市冷库节能解决方案:如何实现超市降本增效

在连锁超市冷库运营中&#xff0c;高能耗、设备损耗快、人工管理低效等问题长期困扰企业。御控冷库节能解决方案通过智能控制化霜、按需化霜、实时监控、故障诊断、自动预警、远程控制开关六大核心技术&#xff0c;实现年省电费15%-60%&#xff0c;且不改动原有装备、安装快捷、…...

镜像里切换为普通用户

如果你登录远程虚拟机默认就是 root 用户&#xff0c;但你不希望用 root 权限运行 ns-3&#xff08;这是对的&#xff0c;ns3 工具会拒绝 root&#xff09;&#xff0c;你可以按以下方法创建一个 非 root 用户账号 并切换到它运行 ns-3。 一次性解决方案&#xff1a;创建非 roo…...

python如何将word的doc另存为docx

将 DOCX 文件另存为 DOCX 格式&#xff08;Python 实现&#xff09; 在 Python 中&#xff0c;你可以使用 python-docx 库来操作 Word 文档。不过需要注意的是&#xff0c;.doc 是旧的 Word 格式&#xff0c;而 .docx 是新的基于 XML 的格式。python-docx 只能处理 .docx 格式…...

多模态图像修复系统:基于深度学习的图片修复实现

多模态图像修复系统:基于深度学习的图片修复实现 1. 系统概述 本系统使用多模态大模型(Stable Diffusion Inpainting)实现图像修复功能,结合文本描述和图片输入,对指定区域进行内容修复。系统包含完整的数据处理、模型训练、推理部署流程。 import torch import numpy …...

【p2p、分布式,区块链笔记 MESH】Bluetooth蓝牙通信 BLE Mesh协议的拓扑结构 定向转发机制

目录 节点的功能承载层&#xff08;GATT/Adv&#xff09;局限性&#xff1a; 拓扑关系定向转发机制定向转发意义 CG 节点的功能 节点的功能由节点支持的特性和功能决定。所有节点都能够发送和接收网格消息。节点还可以选择支持一个或多个附加功能&#xff0c;如 Configuration …...

Python常用模块:time、os、shutil与flask初探

一、Flask初探 & PyCharm终端配置 目的: 快速搭建小型Web服务器以提供数据。 工具: 第三方Web框架 Flask (需 pip install flask 安装)。 安装 Flask: 建议: 使用 PyCharm 内置的 Terminal (模拟命令行) 进行安装,避免频繁切换。 PyCharm Terminal 配置建议: 打开 Py…...

第14节 Node.js 全局对象

JavaScript 中有一个特殊的对象&#xff0c;称为全局对象&#xff08;Global Object&#xff09;&#xff0c;它及其所有属性都可以在程序的任何地方访问&#xff0c;即全局变量。 在浏览器 JavaScript 中&#xff0c;通常 window 是全局对象&#xff0c; 而 Node.js 中的全局…...

组合模式:构建树形结构的艺术

引言:处理复杂对象结构的挑战 在软件开发中,我们常遇到需要处理部分-整体层次结构的场景: 文件系统中的文件与文件夹GUI中的容器与组件组织结构中的部门与员工菜单系统中的子菜单与菜单项组合模式正是为解决这类问题而生的设计模式。它允许我们将对象组合成树形结构来表示&…...

Kafka深度解析与原理剖析

文章目录 一、Kafka核心架构原理1. **分布式协调与选举**2. **ISR、OSR与HW机制**3. **高性能存储设计**4. **刷盘机制 (Flush)**5. **消息压缩算法**二、高可用与消息可靠性保障1. **数据高可用策略**2. **消息丢失场景与规避**3. **顺序消费保证**三、Kafka高频面试题精析1. …...

React Hooks 指南:何时使用 useEffect ?

在 React 的函数组件中&#xff0c;useEffect Hook 是一个强大且不可或缺的工具。它允许我们处理副作用 (side effects)——那些在组件渲染之外发生的操作。但是&#xff0c;什么时候才是使用 useEffect 的正确时机呢&#xff1f;让我们深入探讨一下&#xff01; 什么是副作用…...