专门做电商的招聘网站/微信视频号小店
目录
0、引言
1、环境配置
2、数据集准备
3、创建配置文件
3.1、设置官方配置文件:default.yaml,可自行修改。
3.2、设置data.yaml
4、进行训练
4.1、方法一
4.2、方法二
5、验证模型
5.1、命令行输入
5.2、脚本运行
6、总结
0、引言
本文是使用YOLOv10训练自己的数据集,数据集包含COCO数据集的人猫狗数据以及自己制作的人猫狗数据集,类别为0:person、1:cat、2:dog三类,大家可根据自己的数据集类别进行调整。
1、环境配置
打开Anaconda3终端,进入base环境,创建新环境
conda create -n yolov10 python=3.9
conda activate yolov10
#cd到yolov10的目录下
pip install -r requirements.txt -i https://pypi.tuna.tsinghua.edu.cn/simple/
pip install -e .
2、数据集准备
YOLOv10的训练数据集格式与YOLOv8相同
mydata
______images
____________train
_________________001.jpg
____________val
_________________002.jpg
______labels
____________train
_________________001.txt
____________val
_________________002.txt
参照这篇博客的数据集准备即可:
YOLOv8-Detect训练CoCo数据集+自己的数据集_yolov8训练coco-CSDN博客
3、创建配置文件
3.1、设置官方配置文件:default.yaml,可自行修改。
3.2、设置data.yaml
根据自己的数据集位置进行修改和配置。
path: D:\Yolov8\ultralytics-main\datasets\mydata # dataset root dir
train: images/train # train images (relative to 'path') 118287 images
val: images/val # val images (relative to 'path') 5000 images
#test: test-dev2017.txt # 20288 of 40670 images, submit to https://competitions.codalab.org/competitions/20794# Classes
names:0: person1: cat2: dog
nc: 3
4、进行训练
上述步骤完成后,即可开始训练。
4.1、方法一
通过命令直接进行训练在其中指定参数,命令如下:
data.yaml根据实际路径而来
yolo detect train model=yolov10s.yaml data=data.yaml batch=16 epochs=100 imgsz=640
yolo detect train model=yolov10s.pt data=data.yaml batch=16 epochs=100 imgsz=640
4.2、方法二
通过创建py文件来进行训练
from ultralytics import YOLOv10#数据集配置文件
data_yaml_path = r'D:\Yolov10\yolov10-main\yolov10-detect\data.yaml'
#预训练模型
pre_model_name = r'D:\Yolov10\yolov10-main\yolov10-detect\yolov10s.pt'if __name__ == '__main__':#加载预训练模型model = YOLOv10(pre_model_name)#训练生成的文件保存路径名savename = 'train_yolov10s'#训练模型results = model.train(data=data_yaml_path,epochs=10,name=savename)
也可以使用yaml文件
from ultralytics import YOLOv10#数据集配置文件
data_yaml_path = r'D:\Yolov10\yolov10-main\yolov10-detect\data.yaml'
#预训练模型
pre_model_name = r'D:\Yolov10\yolov10-main\ultralytics\cfg\models\v10\yolov10s.yaml'if __name__ == '__main__':#加载预训练模型model = YOLOv10(pre_model_name)#训练生成的文件保存路径名savename = 'train_yolov10s'#训练模型results = model.train(data=data_yaml_path,epochs=10,name=savename)
注意修改类
训练过程(我这里后面多加了一类所以是4):
训练过程中会保存以下内容,最后得到两个模型分别是:best.pt、last.pt
5、验证模型
训练进程完毕以后可使用一些验证数据进行模型验证,查看模型的识别效果。
5.1、命令行输入
yolo predict model=best.pt source='D:\Yolov10\yolov10-main\yolov10-detect\Testsets\test1'
5.2、脚本运行
from ultralytics import YOLOv10
import glob
import os
import numpy as np
import cv2classes = {0: 'person', 1: 'cat', 2: 'dog', 3: 'backpack'
}
class Colors:"""Ultralytics color palette https://ultralytics.com/."""def __init__(self):"""Initialize colors as hex = matplotlib.colors.TABLEAU_COLORS.values()."""hexs = ('FF3838', 'FF9D97', 'FF701F', 'FFB21D', 'CFD231', '48F90A', '92CC17', '3DDB86', '1A9334', '00D4BB','2C99A8', '00C2FF', '344593', '6473FF', '0018EC', '8438FF', '520085', 'CB38FF', 'FF95C8', 'FF37C7')self.palette = [self.hex2rgb(f'#{c}') for c in hexs]# print(self.palette)self.n = len(self.palette)def __call__(self, i, bgr=False):"""Converts hex color codes to rgb values."""c = self.palette[int(i) % self.n]return (c[2], c[1], c[0]) if bgr else c@staticmethoddef hex2rgb(h): # rgb order (PIL)return tuple(int(h[1 + i:1 + i + 2], 16) for i in (0, 2, 4))colors = Colors() # create instance for 'from utils.plots import colors'#预测的图片路径
imgpath = r'D:\Yolov10\yolov10-main\yolov10-detect\Testsets\test1'
#模型路径
modelpath = r'D:\Yolov10\yolov10-main\yolov10-detect\runs\detect\weights\best.pt'
#保存结果的路径
save_dir = imgpath + '_Rst'
os.makedirs(save_dir,exist_ok=True)
model = YOLOv10(modelpath)imgs = glob.glob(os.path.join(imgpath,'*.jpg'))
for img in imgs:imgname = img.split('\\')[-1]frame = cv2.imread(img)results = model.predict(img)[0]# results = model(img)for box in results.boxes:# print(box)xyxy = box.xyxy.squeeze().tolist()x1, y1, x2, y2 = int(xyxy[0]), int(xyxy[1]), int(xyxy[2]), int(xyxy[3])c, conf = int(box.cls), float(box.conf)name = classes[c]color = colors(c, True)cv2.rectangle(frame, (int(xyxy[0]), int(xyxy[1])), (int(xyxy[2]), int(xyxy[3])), color, thickness=2, lineType=cv2.LINE_AA)cv2.putText(frame, f"{name}: {conf:.2f}", (x1, y1 - 10), cv2.FONT_HERSHEY_SIMPLEX, 1, color,2)# cv2.imshow('image', frame)# cv2.waitKey(0)cv2.imwrite(save_dir+'\\'+imgname,frame)
6、总结
至此,整个YOLOv10的训练预测阶段完成,与YOLOv8差不多。
欢迎各位批评指正。
相关文章:

YOLOv10训练自己的数据集
目录 0、引言 1、环境配置 2、数据集准备 3、创建配置文件 3.1、设置官方配置文件:default.yaml,可自行修改。 3.2、设置data.yaml 4、进行训练 4.1、方法一 4.2、方法二 5、验证模型 5.1、命令行输入 5.2、脚本运行 6、总结 0、引言 本文…...

探索Web前端三大主流框架:Angular、React和Vue.js
探索Web前端三大主流框架:Angular、React和Vue.js 在现代Web开发中,前端框架已经成为开发者构建复杂应用的重要工具。Angular、React和Vue.js是目前最受欢迎的三大前端框架,它们各具特色,适用于不同的开发需求。本文将详细介绍这…...

《HelloGitHub》第 98 期
兴趣是最好的老师,HelloGitHub 让你对编程感兴趣! 简介 HelloGitHub 分享 GitHub 上有趣、入门级的开源项目。 github.com/521xueweihan/HelloGitHub 这里有实战项目、入门教程、黑科技、开源书籍、大厂开源项目等,涵盖多种编程语言 Python、…...

Xtransfer面试内容
一、Xtransfer一轮面试内容 1.进程间的通信方式 2.redis的故障转移是如何选举主节点的 3.redis快的原因 4.redis、ES、mysql选型的场景 5.redis项目的挑战和难点 6.redis和ZK各自的应用场景 7.ZK选举的算法 8.socket建立连接的过程,与TCP是一回事吗? So…...

论文笔记:Image Anaimation经典论文-运动关键点模型(Monkey-Net)
Monkey-Net(MOviNg KEYpoints) paper: https://arxiv.org/pdf/1812.08861, CVPR 2019 code: https://github.com/AliaksandrSiarohin/monkey-net/tree/master 相关工作 视频生成演变过程: spatio-temporal network: 如基于GAN网络的生成模…...

Kibana创建ElasticSearch 用户角色
文章目录 1, ES 权限参考2, 某应用的管理员权限:可以open/close/delete/cat/read/write 索引3, 某应用的读写权限:可以cat/read/write 索引 (不能删除索引或数据)4, 某应用的只读权限 1, ES 权限参考 https://www.elastic.co/gui…...

Vue基础(2)响应式基础
一. reactive() 在 Vue3 中,可以使用 reactive() 创建一个响应式对象或数组: <script setup> import { reactive } from vueconst state reactive({ count: 0 }) </script><template><button click"state.count">{…...

Mysql基础教程(15):别名
MySQL 别名 在本文中,我们讨论了 MySQL 中的列别名,表别名和派生表别名,以及使用别名来简化 SQL 和提高 SQL 的可读性。 如果在一个 SQL 中涉及到多个表,我们需要使用 table_name.column_name 这样的方式来引用每个表的字段&…...

SpringCloud 微服务中网关如何记录请求响应日志?
在基于SpringCloud开发的微服务中,我们一般会选择在网关层记录请求和响应日志,并将其收集到ELK中用作查询和分析。 今天我们就来看看如何实现此功能。 日志实体类 首先我们在网关中定义一个日志实体,用于组装日志对象 Data public class …...

【运维项目经历|028】Cobbler自动化部署平台构建项目
🍁博主简介: 🏅云计算领域优质创作者 🏅2022年CSDN新星计划python赛道第一名 🏅2022年CSDN原力计划优质作者 🏅阿里云ACE认证高级工程师 🏅阿里云开发者社区专…...

“物联网安全:万物互联背景下的隐私保护与数据安全策略“
在物联网(IoT)时代,随着智能设备的普及和万物互联的加速,隐私保护与数据安全成为了亟待解决的关键问题。以下是一些重要的隐私保护与数据安全策略,以确保在万物互联背景下信息的安全: 1. 加强设备安全&…...

LeetCode216组合总和3
题目描述 找出所有相加之和为 n 的 k 个数的组合,且满足下列条件:只使用数字1到9。每个数字 最多使用一次。返回 所有可能的有效组合的列表 。该列表不能包含相同的组合两次,组合可以以任何顺序返回。 解析 递归加剪枝,搜索长度达…...

微软找腾讯接盘,Windows直接安装手机APP体验起飞了
熟悉微软的同学都知道微软有个传统艺能——什么好用砍什么。 比如 Win10 砍掉了还算方便的小娜,推出 Win11 砍掉了 Win10 上面好用的磁贴功能等。 上一秒用户还在夸奖点赞。 下一秒就给你砍掉,顺带还塞一堆 BUG 给你。 但没办法,PC 近乎垄断…...

【Springcloud微服务】MybatisPlus下篇
🔥 本文由 程序喵正在路上 原创,CSDN首发! 💖 系列专栏:Springcloud微服务 🌠 首发时间:2024年6月4日 🦋 欢迎关注🖱点赞👍收藏🌟留言ὃ…...

i18n-demo
一、demo 1、资源文件准备 如我需要对menu、logMsg内容做国际化。 resources下放各个语言文件,直接放resources下都行。我是新建了一个myi18n文件夹, (1)然后在myi18n上点击New--Resource Bundle (2)在…...

[Leetcode] 0-1背包和完全背包
46. 携带研究材料 纯01背包(非应用):只能选择一次物品 dp[j]:容量为j的背包所能装的最大容量 容量需要倒序 416. 分割等和子集 能否装满 dp[j]:容量为j的背包所能装的最大容量 1049. 最后一块石头的重量 II 尽可…...

自定义类型:联合体和枚举
1. 联合体类型的声明 2. 联合体的特点 3. 联合体大小的计算 4. 枚举类型的声明 5. 枚举类型的优点 6. 枚举类型的使用 欢迎关注 熬夜学编程 创作不易,请多多支持 感谢大家的阅读、点赞、收藏和关注 如有问题,欢迎指正 1. 联合体 1.1 联合体类型的声…...

【Cityengine】Cityengine生产带纹理的建筑模型导入UE4/UE5(下)
【Cityengine】Cityengine生产带纹理的建筑模型导入UE4/UE5(下) 一、导出数据(2022中文版案例)二、安装datasmith插件三、导入数据四、检查导入材质是否正常五、编辑替换材质六、安装模型编辑插件七、编辑替换建筑规则 一、导出数…...

详解51种企业应用架构模式
导读:企业应用包括哪些?它们又分别有哪些架构模式?世界著名软件开发大师Martin Fowler给你答案 01、什么是企业应用 我的职业生涯专注于企业应用,因此,这里所谈及的模式也都是关于企业应用的。(企业应用还…...

【十年java搬砖路】Jumpserver docker版安装及配置Ldap登陆认证
Jumpserver docker 安装启动教程 拉取镜像 docker pull JumpServer启动进行前确保有Redis 和Mysql 创建jumperServer数据库 在MYSQL上执行 创建数据库 登陆MYSQL mysql -u root -p 创建Jumperserveri库 create database jumpserver default charset utf8mb4;可以为jumperSe…...

C\C++内存管理(未完结)
文章目录 一.C\C内存分布二.C语言中动态内存管理方式:malloc/calloc/realloc/free三.C内存管理方式3.1.new/delete操作内置类型3.2.new和delete操作自定义类型 四.operator new与operator delete函数(重要点进行讲解)4.1. operator new与oper…...

一个小时搞定JAVA面向对象(5)——抽象与接口
文章目录 抽象抽象的注意事项static\final\private是否可以修饰抽象方法继承和抽象知识点回顾 接口接口实现总结抽象方法默认方法静态方法成员变量接口的特点接口和抽象类的区别 抽象 关键字: abstract 抽象方法: 修饰符 abstract 返回值类型 方法名(参数); 抽象类: public a…...

图像关键特征描述方法-小目标
图像关键特征描述方法主要包括以下几种: SIFT(尺度不变特征变换): SIFT是一种广泛使用的特征描述方法,它通过尺度空间和梯度方向直方图来描述图像中的关键点。SIFT特征描述具有尺度不变性和旋转不变性,对于光照和视角变化也具有一定的鲁棒性。 SURF(加速稳健特征): SURF…...

【qt15】windeployqt 安装依赖
debug模式vs可以使用qt插件新建qt文件 D:\Qt15\5.15.2\msvc2019\bin\windeployqt.exe Warning: Cannot find Visual Studio installation directory, VCINSTALLDIR is not set.D:\Qt15\5.15.2\msvc2019\bin\windeployqt.exe .\filecopier.exeWindows PowerShell Copyright (C) …...

DETR论文重点
DETR就是 DEtection TRansformer 的缩写。 论文原名:End-to-End Object Detection with Transoformers。 重点有两个:端到端、Transformer结构 论文概述 注意:斜体的文字为论文原文,其他部分内容则是为增进理解而做的解释。 …...

slf4j等多个jar包冲突绑定的排查方法使用IDEA的maven help解决
1.安装 2.使用maven help解决,找到对应包存在的冲突 使用exclude直接解决即可...

MySQL主从的延迟怎么解决呢?
以下是一些减少或解决MySQL主从延迟的策略: 优化查询和索引: 确保所有的查询都经过优化,以减少主服务器上的负载。使用合适的索引来加速查询速度,减少锁的时间。 分散复制负载: 使用多个从服务器分散读取负载。使用并…...

【一百】【算法分析与设计】N皇后问题常规解法+位运算解法
N皇后问题 链接:登录—专业IT笔试面试备考平台_牛客网 来源:牛客网 题目描述 给出一个nnn\times nnn的国际象棋棋盘,你需要在棋盘中摆放nnn个皇后,使得任意两个皇后之间不能互相攻击。具体来说,不能存在两个皇后位于同…...

GPT-4:人工智能领域的新里程碑
近期,OpenAI推出了备受瞩目的GPT-4。作为GPT系列的最新成员,GPT-4在自然语言处理(NLP)领域再次刷新了记录,引发了广泛的关注和讨论。在试用GPT-4之后,我深感其在技术能力、应用场景等方面都取得了显著的进步…...

mysql inset bug
在 SQL 中,日期值需要用单引号包围,这是因为 SQL 将日期值视为字符串格式。数据库引擎在处理这些值时会将它们解析为适当的日期类型。如果不使用单引号,数据库引擎会将它们视为数字或列名,从而导致语法错误。 日期格式 MySQL 支…...