当前位置: 首页 > news >正文

新疆做网站的公司/近期网络营销的热点事件

新疆做网站的公司,近期网络营销的热点事件,用模板做网站的方法,世纪佳缘网站模板2、Tomcat 线程模型详解 Tomcat I/O模型详解Linux I/O模型详解I/O要解决什么问题Linux的I/O模型分类 Tomcat支持的 I/O 模型Tomcat I/O 模型如何选型 网络编程模型Reactor线程模型单 Reactor 单线程单 Reactor 多线程主从 Reactor 多线程 Tomcat NIO实现Tomcat 异步IO实现 Tomc…

2、Tomcat 线程模型详解

  • Tomcat I/O模型详解
    • Linux I/O模型详解
      • I/O要解决什么问题
      • Linux的I/O模型分类
    • Tomcat支持的 I/O 模型
      • Tomcat I/O 模型如何选型
    • 网络编程模型Reactor线程模型
      • 单 Reactor 单线程
      • 单 Reactor 多线程
      • 主从 Reactor 多线程
    • Tomcat NIO实现
    • Tomcat 异步IO实现
  • Tomcat性能调优
    • 如何监控Tomcat的性能
      • Tomcat 的关键指标
      • 通过 JConsole 监控 Tomcat
        • 吞吐量、响应时间、错误数
        • 线程池
        • CPU
        • JVM 内存
      • 命令行查看 Tomcat 指标
    • 线程池的并发调优
      • sever.xml中配置线程池
      • SpringBoot中调整Tomcat参数

Tomcat I/O模型详解

Linux I/O模型详解

I/O要解决什么问题

  I/O:在计算机内存与外部设备之间拷贝数据的过程。
  程序通过CPU向外部设备发出读指令,数据从外部设备拷贝至内存需要一段时间,这段时间CPU就没事情做了,程序就会两种选择:

  1. 让出CPU资源,让其干其他事情
  2. 继续让CPU不停地查询数据是否拷贝完成

到底采取何种选择就是I/O模型需要解决的事情了。

  以网络数据读取为例来分析,会涉及两个对象,一个是调用这个I/O操作的用户线程,另一个是操作系统内核。一个进程的地址空间分为用户空间和内核空间,基于安全上的考虑,用户程序只能访问用户空间,内核程序可以访问整个进程空间,只有内核可以直接访问各种硬件资源,比如磁盘和网卡。
在这里插入图片描述
当用户线程发起 I/O 调用后,网络数据读取操作会经历两个步骤:

  • 数据准备阶段: 用户线程等待内核将数据从网卡拷贝到内核空间。
  • 数据拷贝阶段: 内核将数据从内核空间拷贝到用户空间(应用进程的缓冲区)。
    在这里插入图片描述
    不同的I/O模型对于这2个步骤有着不同的实现步骤。

Linux的I/O模型分类

Linux 系统下的 I/O 模型有 5 种:

  • 同步阻塞I/O(bloking I/O)
  • 同步非阻塞I/O(non-blocking I/O)
  • I/O多路复用(multiplexing I/O)
  • 信号驱动式I/O(signal-driven I/O)
  • 异步I/O(asynchronous I/O)

其中信号驱动式IO在实际中并不常用
在这里插入图片描述

  • 阻塞或非阻塞是指应用程序在发起 I/O 操作时,是立即返回还是等待。
  • 同步或异步是指应用程序在与内核通信时,数据从内核空间到应用空间的拷贝,是由内核主动发起还是由应用程序来触发。

在这里插入图片描述

Tomcat支持的 I/O 模型

Tomcat 支持的 I/O 模型有:

IO模型描述
BIO (JIoEndpoint)同步阻塞式IO,即Tomcat使用传统的java.io进行操作。该模式下每个请求都会创建一个线程,对性能开销大,不适合高并发场景。优点是稳定,适合连接数目小且固定架构。 Tomcat8.5.x开始移除BIO。
NIO(NioEndpoint)同步非阻塞式IO,jdk1.4 之后实现的新IO。该模式基于多路复用选择器监测连接状态再同步通知线程处理,从而达到非阻塞的目的。比传统BIO能更好的支持并发性能。Tomcat 8.0之后默认采用该模式。NIO方式适用于连接数目多且连接比较短(轻操作) 的架构, 比如聊天服务器, 弹幕系统, 服务器间通讯,编程比较复杂
AIO (Nio2Endpoint)异步非阻塞式IO,jdk1.7后之支持 。与nio不同在于不需要多路复用选择器,而是请求处理线程执行完成进行回调通知,继续执行后续操作。Tomcat 8之后支持。一般适用于连接数较多且连接时间较长的应用
APR(AprEndpoint)全称是 Apache Portable Runtime/Apache可移植运行库),是Apache HTTP服务器的支持库。AprEndpoint 是通过 JNI 调用 APR 本地库而实现非阻塞 I/O 的。使用需要编译安装APR 库

  注意: Linux 内核没有很完善地支持异步 I/O 模型,因此 JVM 并没有采用原生的 Linux 异步 I/O,而是在应用层面通过 epoll 模拟了异步 I/O 模型。因此在 Linux 平台上,Java NIO 和 Java NIO2 底层都是通过 epoll 来实现的,但是 Java NIO 更加简单高效。

Tomcat I/O 模型如何选型

  I/O 调优实际上是连接器类型的选择,一般情况下默认都是 NIO,在绝大多数情况下都是够用的,除非你的 Web 应用用到了 TLS 加密传输,而且对性能要求极高,这个时候可以考虑 APR,因为 APR 通过 OpenSSL 来处理 TLS 握手和加密 / 解密。OpenSSL 本身用 C 语言实现,它还对 TLS 通信做了优化,所以性能比 Java 要高。如果你的 Tomcat 跑在 Windows 平台上,并且 HTTP 请求的数据量比较大,可以考虑 NIO2,这是因为 Windows 从操作系统层面实现了真正意义上的异步 I/O,如果传输的数据量比较大,异步 I/O 的效果就能显现出来。如果你的 Tomcat 跑在 Linux 平台上,建议使用 NIO。因为在 Linux 平台上,Java NIO 和 Java NIO2 底层都是通过 epoll 来实现的,但是 Java NIO 更加简单高效。
  指定IO模型只需修改protocol配置

<!-- 修改protocol属性, 使用NIO2 -->
<Connector port="8080" protocol="org.apache.coyote.http11.Http11Nio2Protocol"connectionTimeout="20000"redirectPort="8443" />

网络编程模型Reactor线程模型

  Reactor 模型是网络服务器端用来处理高并发网络 IO 请求的一种编程模型。
  该模型主要有三类处理事件:即连接事件、写事件、读事件;三个关键角色:即 reactor、acceptor、handler。acceptor负责连接事件,handler负责读写事件,reactor负责事件监听和事件分发。

单 Reactor 单线程

在这里插入图片描述
  由上图可以看出,单Reactor单线程模型中的 reactor、acceptor 和 handler以及后续业务处理逻辑的功能都是由一个线程来执行的。reactor 负责监听客户端事件和事件分发,一旦有连接事件发生,它会分发给 acceptor,由 acceptor 负责建立连接,然后创建一个 handler。如果是读写事件,reactor 将事件分发给 handler 进行处理。handler 负责读取客户端请求,进行业务处理,并最终给客户端返回结果。

单 Reactor 多线程

在这里插入图片描述
  该模型中,reactor、acceptor 和 handler 的功能由一个线程来执行,与此同时,会有一个线程池,由若干 worker 线程组成。在监听客户端事件、连接事件处理方面,这个类型和单 rector 单线程是相同的,但是不同之处在于,在单 reactor 多线程类型中,handler 只负责读取请求和写回结果,而具体的业务处理由 worker 线程来完成。

主从 Reactor 多线程

在这里插入图片描述
  在这个类型中,会有一个主 reactor 线程、多个子 reactor 线程和多个 worker 线程组成的一个线程池。其中,主 reactor 负责监听客户端事件,并在同一个线程中让 acceptor 处理连接事件。一旦连接建立后,主 reactor 会把连接分发给子 reactor 线程,由子 reactor 负责这个连接上的后续事件处理。那么,子 reactor 会监听客户端连接上的后续事件,有读写事件发生时,它会让在同一个线程中的 handler 读取请求和返回结果,而和单 reactor 多线程类似,具体业务处理,它还是会让线程池中的 worker 线程处理。

Tomcat NIO实现

  在 Tomcat 中,EndPoint 组件的主要工作就是处理 I/O,而 NioEndpoint 利用 Java NIO API 实现了多路复用 I/O 模型。Tomcat的NioEndpoint 是基于主从Reactor多线程模型设计的
在这里插入图片描述

  • LimitLatch 是连接控制器,它负责控制最大连接数,NIO 模式下默认是 10000(tomcat9中8192),当连接数到达最大时阻塞线程,直到后续组件处理完一个连接后将连接数减 1。注意到达最大连接数后操作系统底层还是会接收客户端连接,但用户层已经不再接收。
  • Acceptor 跑在一个单独的线程里,它在一个死循环里调用 accept 方法来接收新连接,一旦有新的连接请求到来,accept 方法返回一个 Channel 对象,接着把 Channel 对象交给 Poller 去处理。
#NioEndpoint#initServerSocketserverSock = ServerSocketChannel.open();
//第2个参数表示操作系统的等待队列长度,默认100
//当应用层面的连接数到达最大值时,操作系统可以继续接收的最大连接数
serverSock.bind(addr, getAcceptCount());
//ServerSocketChannel 被设置成阻塞模式
serverSock.configureBlocking(true);

  ServerSocketChannel 通过 accept() 接受新的连接,accept() 方法返回获得 SocketChannel 对象,然后将 SocketChannel 对象封装在一个 PollerEvent 对象中,并将 PollerEvent 对象压入 Poller 的 SynchronizedQueue 里,这是个典型的生产者 - 消费者模式,Acceptor 与 Poller 线程之间通过 SynchronizedQueue 通信。

  • Poller 的本质是一个 Selector,也跑在单独线程里。Poller 在内部维护一个 Channel 数组,它在一个死循环里不断检测 Channel 的数据就绪状态,一旦有 Channel 可读,就生成一个 SocketProcessor 任务对象扔给 Executor 去处理。
    在这里插入图片描述
  • Executor 就是线程池,负责运行 SocketProcessor 任务类,SocketProcessor 的 run 方法会调用 Http11Processor 来读取和解析请求数据。Http11Processor 是应用层协议的封装,它会调用容器获得响应,再把响应通过 Channel 写出。

Tomcat 异步IO实现

  NIO 和 NIO2 最大的区别是,一个是同步一个是异步。异步最大的特点是,应用程序不需要自己去触发数据从内核空间到用户空间的拷贝。
在这里插入图片描述
  Nio2Endpoint 中没有 Poller 组件,也就是没有 Selector。在异步 I/O 模式下,Selector 的工作交给内核来做了。

Tomcat性能调优

  Tomcat9参数配置

如何监控Tomcat的性能

Tomcat 的关键指标

  Tomcat 的关键指标有吞吐量、响应时间、错误数、线程池、CPU 以及 JVM 内存。前三个指标是我们最关心的业务指标,Tomcat 作为服务器,就是要能够又快有好地处理请求,因此吞吐量要大、响应时间要短,并且错误数要少。后面三个指标是跟系统资源有关的,当某个资源出现瓶颈就会影响前面的业务指标,比如线程池中的线程数量不足会影响吞吐量和响应时间;但是线程数太多会耗费大量 CPU,也会影响吞吐量;当内存不足时会触发频繁地 GC,耗费 CPU,最后也会反映到业务指标上来。

通过 JConsole 监控 Tomcat

JConsole是一款基于JMX的可视化监控和管理工具

  1. 开启 JMX 的远程监听端口
    我们可以在 Tomcat 的 bin 目录下新建一个名为setenv.sh的文件(或者setenv.bat,根据你的操作系统类型),然后输入下面的内容:
export JAVA_OPTS="${JAVA_OPTS} -Dcom.sun.management.jmxremote"
export JAVA_OPTS="${JAVA_OPTS} -Dcom.sun.management.jmxremote.port=8011"
export JAVA_OPTS="${JAVA_OPTS} -Djava.rmi.server.hostname=x.x.x.x"
export JAVA_OPTS="${JAVA_OPTS} -Dcom.sun.management.jmxremote.ssl=false"
export JAVA_OPTS="${JAVA_OPTS} -Dcom.sun.management.jmxremote.authenticate=false"
  1. 重启 Tomcat,这样 JMX 的监听端口 8011 就开启了,接下来通过 JConsole 来连接这个端口。
jconsole x.x.x.x:8011

我们可以看到 JConsole 的主界面:
在这里插入图片描述

吞吐量、响应时间、错误数

  在 MBeans 标签页下选择 GlobalRequestProcessor,这里有 Tomcat 请求处理的统计信息。你会看到 Tomcat 中的各种连接器,展开“http-nio-8080”,你会看到这个连接器上的统计信息,其中 maxTime 表示最长的响应时间,processingTime 表示平均响应时间,requestCount 表示吞吐量,errorCount 就是错误数。
在这里插入图片描述

线程池

选择“线程”标签页,可以看到当前 Tomcat 进程中有多少线程,如下图所示:
在这里插入图片描述

图的左下方是线程列表,右边是线程的运行栈,这些都是非常有用的信息。如果大量线程阻塞,通过观察线程栈,能看到线程阻塞在哪个函数,有可能是 I/O 等待,或者是死锁。

CPU

在主界面可以找到 CPU 使用率指标,请注意这里的 CPU 使用率指的是 Tomcat 进程占用的 CPU,不是主机总的 CPU 使用率。
在这里插入图片描述

JVM 内存

选择“内存”标签页,你能看到 Tomcat 进程的 JVM 内存使用情况。
在这里插入图片描述

命令行查看 Tomcat 指标

  极端情况下如果 Web 应用占用过多 CPU 或者内存,又或者程序中发生了死锁,导致 Web 应用对外没有响应,监控系统上看不到数据,这个时候需要我们登陆到目标机器,通过命令行来查看各种指标。

  1. 首先我们通过 ps 命令找到 Tomcat 进程,拿到进程 ID。
ps -ef|grep tomcat
  1. 接着查看进程状态的大致信息,通过cat /proc//status命令:
    在这里插入图片描述

  2. 监控进程的 CPU 和内存资源使用情况:
    在这里插入图片描述

  3. 查看 Tomcat 的网络连接,比如 Tomcat 在 8080 端口上监听连接请求,通过下面的命令查看连接列表:
    在这里插入图片描述

  4. 还可以分别统计处在“已连接”状态和“TIME_WAIT”状态的连接数:
    在这里插入图片描述

  5. 通过 ifstat 来查看网络流量,大致可以看出 Tomcat 当前的请求数和负载状况。
    在这里插入图片描述

线程池的并发调优

线程池调优指的是给 Tomcat 的线程池设置合适的参数,使得 Tomcat 能够又快又好地处理请求。
在这里插入图片描述

sever.xml中配置线程池

<!--
namePrefix: 线程前缀
maxThreads: 最大线程数,默认设置 200,一般建议在 500 ~ 1000,根据硬件设施和业务来判断
minSpareThreads: 核心线程数,默认设置 25
prestartminSpareThreads: 在 Tomcat 初始化的时候就初始化核心线程
maxQueueSize: 最大的等待队列数,超过则拒绝请求 ,默认 Integer.MAX_VALUE
maxIdleTime: 线程空闲时间,超过该时间,线程会被销毁,单位毫秒
className: 线程实现类,默认org.apache.catalina.core.StandardThreadExecutor
-->
<Executor name="tomcatThreadPool" namePrefix="catalina-exec-Fox"prestartminSpareThreads="true"maxThreads="500" minSpareThreads="10"  maxIdleTime="10000"/><Connector port="8080" protocol="HTTP/1.1"  executor="tomcatThreadPool"connectionTimeout="20000"redirectPort="8443" URIEncoding="UTF-8"/>

  这里面最核心的就是如何确定 maxThreads 的值,如果这个参数设置小了,Tomcat 会发生线程饥饿,并且请求的处理会在队列中排队等待,导致响应时间变长;如果 maxThreads 参数值过大,同样也会有问题,因为服务器的 CPU 的核数有限,线程数太多会导致线程在 CPU 上来回切换,耗费大量的切换开销。
  理论上我们可以通过公式 线程数 = CPU 核心数 *(1+平均等待时间/平均工作时间),计算出一个理想值,这个值只具有指导意义,因为它受到各种资源的限制,实际场景中,我们需要在理想值的基础上进行压测,来获得最佳线程数。

SpringBoot中调整Tomcat参数

方式1: yml中配置 (属性配置类:ServerProperties)

server:tomcat:threads:min-spare: 20max: 500connection-timeout: 5000ms

SpringBoot中的TomcatConnectorCustomizer类可用于对Connector进行定制化修改。

@Configuration
public class MyTomcatCustomizer implementsWebServerFactoryCustomizer<TomcatServletWebServerFactory> {@Overridepublic void customize(TomcatServletWebServerFactory factory) {factory.setPort(8090);factory.setProtocol("org.apache.coyote.http11.Http11NioProtocol");factory.addConnectorCustomizers(connectorCustomizer());}@Beanpublic TomcatConnectorCustomizer connectorCustomizer(){return new TomcatConnectorCustomizer() {@Overridepublic void customize(Connector connector) {Http11NioProtocol protocol = (Http11NioProtocol) connector.getProtocolHandler();protocol.setMaxThreads(500);protocol.setMinSpareThreads(20);protocol.setConnectionTimeout(5000);}};}}

相关文章:

2、Tomcat 线程模型详解

2、Tomcat 线程模型详解 Tomcat I/O模型详解Linux I/O模型详解I/O要解决什么问题Linux的I/O模型分类 Tomcat支持的 I/O 模型Tomcat I/O 模型如何选型 网络编程模型Reactor线程模型单 Reactor 单线程单 Reactor 多线程主从 Reactor 多线程 Tomcat NIO实现Tomcat 异步IO实现 Tomc…...

对硬盘的设想:纸存、执行存

固态硬盘出现后&#xff0c;发现它的擦写次数受限&#xff0c;越是便宜的固态硬盘&#xff0c;擦写次数越少。于是&#xff0c;有了“纸存”的设想&#xff0c;即硬盘上的单元只能改写一次&#xff0c;就像拿钢笔在纸上写字一样。这时&#xff0c;文件系统、数据库该怎么设计&a…...

最新付会进群多群同时变现社群系统V3.5.3版本 详细教程+源码下载

市面1888最新付费进群多群同时变现系统V3.5.3版本 详细教程源码下载介绍&#xff1a; 续男粉变现&#xff0c;相亲群变现后 演化出来的最新多群同时变现系统 可同时进行40个群同时变现 可设置地域群&#xff0c;相亲&#xff0c;男粉变现等多种群 购买后包括详细的 域名服…...

python tk实现标签切换页面

import tkinter as tk from tkinter import ttk# 初始化主窗口 root tk.Tk() root.title("标签页示例")# 设置窗口大小 root.geometry("400x300")# 创建 Notebook 小部件 notebook ttk.Notebook(root) notebook.pack(expandTrue, fill"both")#…...

引擎:UI

一、控件介绍 Button 按钮 创建一个按钮 按钮禁用 精灵模式 颜色模式 缩放模式 绑定点击事件 EditBox 输入框 Layout 布局 支持水平排列、垂直排列、背包排列 PageView 页面视图 ProgressBar 进度条 RichText 富文本 绑定点击事件 事件可以被其它标签包裹 图文混排 Scroll…...

Redis常见异常及优化方案

Redis常见异常及优化方案 Redis集群&#xff08;redis-cluster&#xff09;中的三主三从或者哨兵&#xff08;sentinel&#xff09;模式配置是一种常见的高可用架构&#xff0c;用于解决单点故障和提高数据可靠性。然而&#xff0c;即使在这样的配置下&#xff0c;仍然可能会遇…...

YOLOV5 图像分割:利用yolov5进行图像分割

1、介绍 本章将介绍yolov5的分割部分,其他的yolov5分类、检测项目参考之前的博文 分类:YOLOV5 分类:利用yolov5进行图像分类_yolov5 图像分类-CSDN博客 检测:YOLOV5 初体验:简单猫和老鼠数据集模型训练-CSDN博客 yolov5的分割和常规的分割项目有所区别,这里分割的结果…...

如何在Linux中使用Screen管理后台进程

如何在Linux中使用Screen管理后台进程 在Linux系统中&#xff0c;screen是一个非常有用的工具&#xff0c;它允许用户在一个终端窗口中创建多个虚拟终端&#xff0c;并且可以在这些终端之间切换&#xff0c;甚至可以在断开连接后重新连接到这些会话。这对于需要在后台运行长时…...

互联网轻量级框架整合之SpringMVC初始化及各组件工作原理

Spring MVC的初始化和流程 MVC理念的发展 SpringMVC是Spring提供给Web应用领域的框架设计&#xff0c;MVC分别是Model-View-Controller的缩写&#xff0c;它是一个设计理念&#xff0c;不仅仅存在于Java中&#xff0c;各类语言及开发均可用&#xff0c;其运转流程和各组件的应…...

【Android面试八股文】finally中的代码一定会执行吗?try里有return,finally还执行么?

文章目录 finally中的代码一定会执行吗?try里有return,finally还执行么?这道题想考察什么?考察的知识点考生应该如何回答验证特殊情况线程是守护线程遇到System.exit()finally中的代码一定会执行吗?try里有return,finally还执行么? 这道题想考察什么? 对Java语言的深…...

微服务第一轮

课程文档 目录 一、业务流程 1、登录 Controller中的接口&#xff1a; Service中的实现impl&#xff1a; Service中的实现impl所继承的接口IService&#xff08;各种方法&#xff09;&#xff1a; VO&#xff1a; DTO&#xff1a; 2、搜索商品 ​Controller中的接口&a…...

Linux 命令 FIO:深入理解磁盘性能测试工具

Linux 命令 FIO&#xff1a;深入理解磁盘性能测试工具 在 Linux 系统中&#xff0c;磁盘 I/O 性能对于系统的整体性能至关重要。为了准确、快速地评估磁盘性能&#xff0c;我们需要一个强大的工具来模拟各种磁盘读写场景。FIO&#xff08;Flexible I/O Tester&#xff09;就是…...

《精通ChatGPT:从入门到大师的Prompt指南》大纲目录

第一部分&#xff1a;入门指南 第1章&#xff1a;认识ChatGPT 1.1 ChatGPT是什么 1.2 ChatGPT的应用领域 1.3 为什么需要了解Prompt 第2章&#xff1a;Prompt的基本概念 2.1 什么是Prompt 2.2 好Prompt的特征 2.3 常见的Prompt类型 第二部分&#xff1a;Prompt设计技巧 第…...

Go_context包

是什么?为什么? context时goroutine之间传递上下文消息&#xff0c;包括信号取消&#xff0c;储存数据。 为什么&#xff1f; Go通常写后端服务&#xff0c;启动一个HTTP请求会启动多个goroutine&#xff0c;可以共享token数据。 或者处理时间长&#xff0c;通过停止信号关联…...

Mysql基础进阶速成版

一&#xff1a;sql语句&#xff1a; 1.创建一张表&#xff1a;写成公式&#xff1a;创建函数(create table)表名(配置字段)。配置字段公式:字段名称字段类型&#xff0c;常用的类型有&#xff1a;整数类型int(8),int(16),int(32).....&#xff0c;小数类型float(8),float(16).…...

Tomcat安装与配置要点和难点以及常见报错和解决方案

Tomcat 的安装及配置教程如下,将按照清晰的步骤进行说明: 一、安装前的准备 安装 JDK:Tomcat 是基于 Java 的 Web 服务器,因此需要先安装 JDK(Java Development Kit)。 你可以根据自己的操作系统选择适合的 JDK 版本,并确保它已正确安装和配置。 二、下载 Tomcat 访问 A…...

【Oracle】Oracle导入导出dmp文件

文章目录 前言一、什么是dmp&#xff1f;二、imp/impdp、exp/expdp对比及示例1.区别2.imp/impdp对比及示例a. impb. impbp 3.exp/expdp对比及示例a. expb.expdp 3.其他事项 三、执行导入导出前置条件1.创建角色并授权2.创建目录映射 前言 在工作中&#xff0c;经常会遇到需要备…...

渗透测试模拟实战-tomexam网络考试系统

渗透测试&#xff0c;也称为“pentest”或“道德黑客”&#xff0c;是一种模拟攻击的网络安全评估方法&#xff0c;旨在识别和利用系统中的安全漏洞。这种测试通常由专业的安全专家执行&#xff0c;他们使用各种技术和工具来尝试突破系统的防御&#xff0c;如网络、应用程序、主…...

“神经网络之父”和“深度学习鼻祖”Geoffrey Hinton

“神经网络之父”和“深度学习鼻祖”Geoffrey Hinton在神经网络领域数十年如一日的研究&#xff0c;对深度学习的推动和贡献显著。 一、早期贡献与突破 反向传播算法的引入&#xff1a;Hinton是将反向传播&#xff08;Backpropagation&#xff09;算法引入多层神经网络训练的…...

[消息队列 Kafka] Kafka 架构组件及其特性(一)

工作中的消息队列用的是Kafka&#xff0c;一直没有系统的了解&#xff0c;这边集中整理一下。 目录 Kafka主要组件有十个部分。 1.Broker&#xff08;服务器&#xff09; 2.Record&#xff08;消息&#xff09; 3.Producer&#xff08;生产者&#xff09; 4.Consumer&…...

【Flutter 面试题】 JIT 与 AOT分别是什么?

【Flutter 面试题】 JIT 与 AOT分别是什么? 文章目录 写在前面口述回答写在前面 🙋 关于我 ,小雨青年 👉 CSDN博客专家,GitChat专栏作者,阿里云社区专家博主,51CTO专家博主。2023博客之星TOP153。 👏🏻 正在学 Flutter 的同学,你好! 😊 Flutter 面试宝典(…...

QT获取最小化,最大化,关闭窗口事件

QT获取最小化&#xff0c;最大化&#xff0c;关闭窗口事件 主程序头文件&#xff1a; 实现&#xff1a; changeEvent&#xff0c;状态改变事件 closeEvent触发点击窗口关闭按钮事件 其代码它参考&#xff1a; /*重写该函数*/ void MainWindow::changeEvent(QEvent *event) {…...

Oracle作业调度器Job Scheduler

Oracle数据库调度器 (Oracle Database Scheduler) 在数据库管理系统中&#xff0c;数据库调度器负责调度和执行数据库中的存储过程、触发器、事件等。它可以确保这些操作在正确的时间和条件下得到执行&#xff0c;以满足业务需求。 1、授权用户权限 -- 创建目录对象 tmp_dir…...

Vue 组件之间的通信

在 Vue.js 中&#xff0c;组件是构建应用程序的基本单位。然而&#xff0c;当你的应用程序变得复杂时&#xff0c;组件之间的通信变得至关重要。本文将介绍几种 Vue 组件之间通信的方式&#xff0c;帮助你更好地管理和组织代码。 父子组件通信 父组件可以通过 props 向子组件传…...

Elementary OS 7.1简单桌面调整

Elementary OS的Pantheon桌面环境提供了一种非常独特和直观的用户体验。默认情况下&#xff0c;Pantheon桌面并没有提供传统的窗口最小化、最大化按钮。但是可以通过安装和使用特定的工具来调整和自定义这些设置。 可以通过以下步骤来启用窗口的最小化和最大化按钮&#xff1a…...

【C++ | 析构函数】类的析构函数详解

&#x1f601;博客主页&#x1f601;&#xff1a;&#x1f680;https://blog.csdn.net/wkd_007&#x1f680; &#x1f911;博客内容&#x1f911;&#xff1a;&#x1f36d;嵌入式开发、Linux、C语言、C、数据结构、音视频&#x1f36d; ⏰发布时间⏰&#xff1a;2024-06-06 1…...

ceph radosgw 原有zone placement信息丢失数据恢复

概述 近期遇到一个故障环境&#xff0c;因为某些原因&#xff0c;导致集群原有zone、zonegroup等信息丢失&#xff08;osd&#xff0c;pool等状态均健康&#xff09;。原有桶和数据无法访问&#xff0c;经过一些列fix后修复&#xff0c; 记录过程 恢复realm和pool相关信息 重…...

​​​​【动手学深度学习】残差网络(ResNet)的研究详情

目录 &#x1f30a;1. 研究目的 &#x1f30a;2. 研究准备 &#x1f30a;3. 研究内容 &#x1f30d;3.1 残差网络 &#x1f30d;3.2 练习 &#x1f30a;4. 研究体会 &#x1f30a;1. 研究目的 了解残差网络&#xff08;ResNet&#xff09;的原理和架构&#xff1b;探究残…...

freertos初体验 - 在stm32上移植

1. 说明 freertos内核 非常精简&#xff0c;代码量也很少&#xff0c;官方也针对主流的编译器和内核准备好了移植文件&#xff0c;所以 freertos 的移植是非常简单的&#xff0c;很多工具&#xff08;例如CubeMX&#xff09;点点鼠标就可以生成一个 freertos 的工程&#xff0…...

ubuntu使用 .deb 文件安装VScode

使用 .deb 文件安装 下载 VSCode 的 .deb 文件&#xff1a; wget -q https://go.microsoft.com/fwlink/?LinkID760868 -O vscode.deb使用 dpkg 安装&#xff1a; sudo dpkg -i vscode.deb如果有依赖项问题&#xff0c;使用以下命令修复&#xff1a; sudo apt-get install -f...