当前位置: 首页 > news >正文

兰州中川国际机场t3航站楼/站长之家的作用

兰州中川国际机场t3航站楼,站长之家的作用,军博做网站公司,网站开发前台后台不同生成式人工智能模型的优缺点 近年来,生成式 AI 模型因其能够创建新的原创内容而备受关注。这些模型旨在生成类似于给定训练数据集的数据,从而产生逼真且富有创意的输出。了解不同类型的生成式 AI 模型及其优缺点对于研究人员、开发人员和用户做出明…

不同生成式人工智能模型的优缺点

近年来,生成式 AI 模型因其能够创建新的原创内容而备受关注。这些模型旨在生成类似于给定训练数据集的数据,从而产生逼真且富有创意的输出。了解不同类型的生成式 AI 模型及其优缺点对于研究人员、开发人员和用户做出明智的决定至关重要,他们可以决定使用哪种模型来完成特定任务。

生成式 AI 模型的类型

生成式 AI 模型有多种类型,每种模型都有自己独特的数据生成方法:

1 变分自动编码器 (VAE):VAE 是一种生成模型,结合了自动编码器和概率模型的元素。它们经过训练,可以将输入数据编码到低维潜在空间中,然后将其解码回原始数据空间。VAE 以能够生成多样化和高质量的样本而闻名。

2 生成对抗网络 (GAN):GAN 由两个神经网络组成:一个生成器和一个鉴别器。生成器生成新样本,而鉴别器则试图区分真实样本和生成样本。这两个网络在竞争环境中一起训练,生成器试图欺骗鉴别器,而鉴别器则试图正确对样本进行分类。GAN 以能够产生高度逼真且具有视觉吸引力的输出而闻名。

3 自回归模型:自回归模型通过根据先前的元素对序列中每个元素的条件概率分布进行建模来生成数据。这些模型一次生成一个元素的数据,使其适用于文本生成和语音合成等任务。

4 基于流的模型:基于流的模型通过使用可逆变换来学习从简单分布(例如高斯分布)到复杂分布(例如训练数据分布)的映射。这些模型以能够生成高质量样本并进行高效推理而闻名。

变分自动编码器(VAE)的优缺点

优点:

VAE 可以通过从潜在空间中采样来生成多样化、高质量的样本。
它们可以学习输入数据的有意义的表示,从而完成数据压缩和去噪等任务。
VAE 提供了一个概率框架,允许对生成的样本进行不确定性估计。

缺点:

VAE 往往会产生模糊的样本,因为它们优化了数据对数似然的下限。
VAE 的潜在空间可能没有有意义的结构,因此很难解释生成的样本。
VAE 可能会遇到模式崩溃的问题,即无论输入如何,生成器都会产生相似的样本。

生成对抗网络(GAN)的优缺点

优点:

GAN 可以生成高度逼真且具有视觉吸引力的样本,通常与真实数据难以区分。
它们可以学习复杂的数据分布,而无需明确地建模底层概率分布。
GAN 可用于图像到图像的转换和风格转换等任务。

缺点:

GAN 训练起来很困难,需要仔细调整超参数。
它们容易出现模式崩溃,即生成器仅产生有限的一组样本。
GAN 并不提供生成样本中不确定性的直接测量。

自回归模型的优缺点

优点:

自回归模型可以一次生成一个元素的数据,从而可以对生成过程进行细粒度的控制。
它们可以对序列中元素之间的复杂依赖关系进行建模,使其适合文本生成等任务。
自回归模型直接衡量了生成的样本的不确定性。

缺点:

自回归模型的训练和生成样本的计算成本很高,尤其是对于长序列而​​言。
它们需要顺序生成,这对于实时应用来说可能很慢而且效率低下。
自回归模型可能难以捕捉数据中的长期依赖关系。

基于流程的模型的优缺点

优点:

基于流的模型可以通过学习从简单分布到数据分布的可逆映射来生成高质量样本。
他们可以通过计算数据的精确可能性来进行有效的推理。
基于流的模型可以模拟复杂的数据分布,而无需对抗性训练。

缺点:

基于流的模型的训练计算成本很高,尤其是对于高维数据。
他们可能难以对多峰分布进行建模,因为它们基于可逆变换。
基于流的模型可能不会像其他生成式 AI 模型那样被广泛研究和采用。

生成式人工智能模型的比较

每个生成式 AI 模型都有自己的优点和缺点:

VAE 擅长生成多样化的样本并学习有意义的表示,但可能会产生模糊的样本。
GAN 可以生成高度逼真的样本,但训练起来很困难,而且容易出现模式崩溃。
自回归模型允许对生成过程进行细粒度的控制,但对于长序列来说,计算成本会很高。
基于流的模型可以生成高质量样本并执行有效推理,但可能难以对多峰分布进行建模。
选择生成式 AI 模型的结论和建议
总之,生成式 AI 模型有可能彻底改变各个行业和领域。了解不同模型的优缺点对于为特定任务选择正确的模型至关重要。选择模型时要考虑的因素包括生成样本的期望质量、训练数据的可用性、计算资源以及应用程序的特定要求。建议尝试不同的模型并评估它们在特定任务上的性能,以确定最适合给定用例的模型。

相关文章:

不同生成式AI模型的优缺点(GAN,VAE,FLOW)

不同生成式人工智能模型的优缺点 近年来,生成式 AI 模型因其能够创建新的原创内容而备受关注。这些模型旨在生成类似于给定训练数据集的数据,从而产生逼真且富有创意的输出。了解不同类型的生成式 AI 模型及其优缺点对于研究人员、开发人员和用户做出明…...

VMware ESXi 8.0U2c macOS Unlocker OEM BIOS 集成网卡驱动 Marvell AQC 网卡定制版

VMware ESXi 8.0U2c macOS Unlocker & OEM BIOS 集成网卡驱动 Marvell AQC 网卡定制版 VMware ESXi 8.0U2c macOS Unlocker & OEM BIOS 集成网卡驱动和 NVMe 驱动 (集成驱动版) 发布 ESXi 8.0U2 集成驱动版,在个人电脑上运行企业级工作负载 请访问原文链…...

SpringCloud Consul基础入门与使用实践总结

【1】Consul简介 官网地址:https://www.consul.io/intro/index.html 下载地址:https://www.consul.io/downloads.html 中文文档:https://www.springcloud.cc/spring-cloud-consul.html ① 基础概念 Consul 是一套开源的分布式服务发现和…...

pdf拆分成有图和无图的pdf(方便打印)

pdf拆分成有图和无图的pdf(方便打印) 原因 打印图片要彩印,每次都要手动弄,打印的时候很麻烦; 随着打印次数的增加,时间就越来越多 为解决此问题,使用python写一个exe解决这个问题 历程 找一个python的GUI界面找到 t…...

通用树查找算法

想要一个树形控件来显示数据,却发现Racket的GUI库竟然没有提供这个控件。既然没有,那就自己手搓一个吧。没想到,在做这个控件中竟然有了新发现! 树形控件有一个功能是查找树中指定的节点。这就是接下来的故事的起点。 1 找外援 不…...

Flutter 中的 TableCell 小部件:全面指南

Flutter 中的 TableCell 小部件:全面指南 Flutter 是一个功能强大的 UI 框架,由 Google 开发,允许开发者使用 Dart 语言构建跨平台的移动、Web 和桌面应用。在 Flutter 的丰富组件库中,TableCell 是一个用于创建表格单元格的组件…...

clickhouse学习笔记(一)入门与安装

目录 一 、入门 简介 核心特性包括 1.1 列式存储 1.2 原生压缩 1.3 向量化执行引擎 1.4 DBMS 功能 1.5 分布式处理 1.6 高吞吐写入能力 1.7 实时分析 1.8 SQL支持 1.9 高度可扩展 1.10 数据分区与线程级并行 1.11 应用场景 1.12 不适用场景 二、ClickHouse单机版…...

【JavaEE精炼宝库】多线程(4)深度理解死锁、内存可见性、volatile关键字、wait、notify

目录 一、死锁 1.1 出现死锁的常见场景: 1.2 产生死锁的后果: 1.3 如何避免死锁: 二、内存可见性 2.1 由内存可见性产生的经典案例: 2.2 volatile 关键字: 2.2.1 volatile 用法: 2.2.2 volatile 不…...

使用Ollama+OpenWebUI部署和使用Phi-3微软AI大模型完整指南

🏡作者主页: 点击! 🤖AI大模型部署与应用专栏:点击! ⏰️创作时间:2024年6月6日23点50分 🀄️文章质量:96分 欢迎来到Phi-3模型的奇妙世界!Phi-3是由微软…...

k8s的ci/cd实践之旅

书接上回k8s集群搭建完毕,来使用它强大的扩缩容能力帮我们进行应用的持续集成和持续部署,整体的机器规划如下: 1.192.168.8.156 搭建gitlab私服 docker pull gitlab/gitlab-ce:latest docker run --detach --hostname 192.168.8.156 --publ…...

笔记96:前馈控制 + 航向误差

1. 回顾 对于一个 系统而言,结构可以画作: 如果采用 这样的控制策略,结构可以画作:(这就是LQR控制) 使用LQR控制器,可以通过公式 和 构建一个完美的负反馈系统; a a 但是有上…...

延时任务工具类

自定义工具类 package com.sxfoundation.task;import org.springframework.beans.factory.annotation.Autowired; import org.springframework.core.task.TaskRejectedException; import org.springframework.scheduling.concurrent.ThreadPoolTaskScheduler; import org.spri…...

springboot下载grpc编译文件,报错缺少protoc-gen-grpc-java:1.34.1:exe不存在

报错如图所示 [ERROR] Then, install it using the command: [ERROR] mvn install:install-file -DgroupIdio.grpc -DartifactIdprotoc-gen-grpc-java -Dversion1.34.1 -Dclassifierwindows-x86_64 -Dpackagingexe -Dfile/path/to/file [ERROR] [ERROR] Alternatively, if yo…...

【面试干货】 非关系型数据库(NoSQL)与 关系型数据库(RDBMS)的比较

【面试干货】 非关系型数据库(NoSQL)与 关系型数据库(RDBMS)的比较 一、引言二、非关系型数据库(NoSQL)2.1 优势 三、关系型数据库(RDBMS)3.1 优势 四、结论 💖The Begin…...

JAVA学习-练习试用Java实现“简化路径”

问题: 给定一个字符串 path ,表示指向某一文件或目录的 Unix 风格 绝对路径 (以 / 开头),请将其转化为更加简洁的规范路径。 在 Unix 风格的文件系统中,一个点(.)表示当前目录本身…...

STM32——ADC篇(ADC的使用)

一、ADC的介绍 1.1什么是ADC ADC(Analogto-Digital Converter)模拟数字转换器,是将模拟信号转换成数字信号的一种外设。比如某一个电阻两端的是一个模拟信号,单片机无法直接采集,此时需要ADC先将短租两端的电…...

(文章复现)基于主从博弈的售电商多元零售套餐设计与多级市场购电策略

参考文献: [1]潘虹锦,高红均,杨艳红,等.基于主从博弈的售电商多元零售套餐设计与多级市场购电策略[J].中国电机工程学报,2022,42(13):4785-4800. 1.摘要 随着电力市场改革的发展,如何制定吸引用户选择的多类型零售套餐成为提升售电商利润的研究重点。为…...

深度评价GPT-4o:探索人工智能的新里程碑

在人工智能领域,OpenAI的GPT系列自推出以来就备受瞩目。GPT-4o作为该系列的最新版本,无疑是迄今为止最为强大的一代。它不仅在技术性能上有了质的飞跃,而且在应用的广泛性和深度上都展现出了惊人的潜力。本文将从版本对比、技术能力、使用体验…...

Linux命令篇(六):vi/vim专项

💝💝💝首先,欢迎各位来到我的博客,很高兴能够在这里和您见面!希望您在这里不仅可以有所收获,同时也能感受到一份轻松欢乐的氛围,祝您生活愉快! 文章目录 一、什么是vim二…...

Java 还能不能继续搞了?

金三银四招聘季已落幕,虽说行情不是很乐观,但真正的强者从不抱怨。 在此期间,我收到众多小伙伴的宝贵反馈,整理出132道面试题,从基础到高级,有八股文,也有对某个知识点的深度解析。包括以下几部…...

【日记】遇到了一个很奇怪的大爷(845 字)

正文 花了昨天和今天两天时间,把数据转移完了。这块 2T 的硬盘可以光荣退休了。目前是没什么存储焦虑了。 农发行净开发一些垃圾系统。今天没什么业务,但跟 ActiveX 斗智斗勇了一整天,最后实在搞不过 IE 浏览器。我也懒得管了,又不…...

Python 机器学习 基础 之 处理文本数据 【处理文本数据/用字符串表示数据类型/将文本数据表示为词袋】的简单说明

Python 机器学习 基础 之 处理文本数据 【处理文本数据/用字符串表示数据类型/将文本数据表示为词袋】的简单说明 目录 Python 机器学习 基础 之 处理文本数据 【处理文本数据/用字符串表示数据类型/将文本数据表示为词袋】的简单说明 一、简单介绍 二、处理文本数据 三、用…...

GAT1399协议分析(10)--视频定义及解析

一、官方定义 二、字段解析 VideoID 类型BasicObjectID 解析参考GAT1399协议分析(8)--ImageInfo字段详解-CSDN博客 InfoKind 采集类型...

【C语言】学生管理系统:完整模拟与实现

🌈个人主页:是店小二呀 🌈C语言笔记专栏:C语言笔记 🌈C笔记专栏: C笔记 🌈喜欢的诗句:无人扶我青云志 我自踏雪至山巅 🔥引言 本篇文章为修改了在校期间实训报告,使用C…...

pypi 发布自己的包

注册pypi个人用户 网址:https://pypi.org 目录结构dingtalk_utils 必须-pkgs- __init__.py .gitignore LICENSE 必须 README.md 必须 requirements.txt setup.py 必须安装依赖 pip install setuptools wheel安装上传工具 pip install twinesetup.py i…...

关闭windows11磁盘地址栏上的历史记录

关闭windows11的磁盘地址栏上的历史记录 windows11打开磁盘后访问某一个磁盘路径后会记录这个磁盘路径,而且有时候会卡住这个地址栏(关都关不掉),非常麻烦。 如下图所示: 关闭地址栏历史记录 按下windows键打开开…...

DDS自动化测试落地方案 | 怿星科技携最新技术亮相是德科技年度盛会

5月28日,怿星科技作为是德科技的重要合作伙伴亮相Keysight World Tech Day 2024。在此次科技盛会上,怿星科技不仅展示了领先的DDS自动化测试解决方案等前沿技术,还分享了在“周期短、任务重”的情况下,如何做好软件开发和测试验证…...

新品!和芯星通全系统全频高精度板卡UB9A0首发

6月6日,和芯星通发布了UB9A0全系统全频高精度GNSS板卡,主要应用于CORS站、便携基站、GNSS全球监测跟踪站等。延续了上一代产品高质量原始观测量的特点,UB9A0在性能和稳定性方面均表现出众。 UB9A0基于射频基带及高精度算法一体化的GNSS SoC芯…...

Cognita RAG:模块化、易用与可扩展的开源框架

Cognita RAG是一个开源框架,它通过模块化设计、用户友好的界面和可扩展性,简化了将领域特定知识整合到通用预训练语言模型中的过程。本文介绍了Cognita的特点、优势、应用场景以及如何帮助开发者构建适合生产环境的RAG应用程序。 文章目录 Cognita RAG介…...

linux虚拟机免密登录配置

1、假设A服务器要免密登录B服务器 2、在A服务器上执行命令: cd /root/.ssh/ ssh-keygen -t rsa #这里会生成两个文件 一个是id_rsa私钥和公钥rsa.pub2、我们把公钥的内容复制粘贴到B服务器的/root/.ssh/authorized_keys文件下 #在A服务器上执行命令记录内容 cat …...