当前位置: 首页 > news >正文

Socket编程权威指南(二)完美掌握TCP流式协议及Socket编程的recv()和send()


在上一篇文章中,我们学习了Socket编程的基础知识,包括创建Socket、绑定地址、监听连接、接收连接等操作。然而,真正的套接字编程远不止于此。本文将重点介绍TCP 流式协议,什么是粘包问题?如何解决粘包问题 ?以及recv()和send()这两个函数详细介绍,它们分别用于读取和发送数据,是网络编程中最为关键的环节。我们将详细剖析函数原型、参数含义,并通过实例代码展示具体用法,助你彻底掌握数据传输的精髓。


想详细了解socket 编程基础知识的同学,请前往查阅Socket编程权威指南(一)打通网络通信的任督二脉。


我们先来回顾一下 socket 编程的基本流程:

在这里插入图片描述


接下来,开始我们今天的正题。

一、TCP 流式协议


1、TCP 流式协议介绍

TCP(传输控制协议)是一种面向连接的、可靠的、基于字节流的传输层通信协议。

以下是 TCP 作为流式协议的一些关键特性和详细说明:

  • 面向连接

    • TCP 需要在数据传输开始前建立一个连接。通过三次握手过程,客户端和服务器交换初始序列号,建立稳定的连接。
  • 字节流

    • 与数据报(如 UDP)不同,TCP 将数据视为字节流,而不是独立的数据包。这意味着 TCP 不保留数据包边界,应用程序需要自己处理数据的边界。
  • 可靠性

    • TCP 保证数据的可靠传输。它使用序列号和确认应答机制来确保数据按顺序、完整地到达目的地。
  • 有序性

    • TCP 保证数据包的有序传输。如果数据包丢失或乱序,TCP 会重传丢失的数据包并重新排序。
  • 拥塞控制

    • TCP 内置拥塞控制机制,通过调整数据的发送速率来避免网络拥塞。这是通过算法如慢启动、拥塞避免、快重传和快恢复实现的。
  • 流量控制

    • TCP 使用滑动窗口机制进行流量控制,接收方根据自己的接收能力告知发送方可以发送多少数据。
  • 全双工通信

    • TCP 允许双向通信,即客户端和服务器可以独立地发送和接收数据。
  • 数据传输

    • TCP 通过套接字接口提供数据传输服务。应用程序可以使用 read()write() 或专门的套接字系统调用如 recv()send() 进行数据传输。
  • 连接管理

    • TCP 连接的建立和终止通过三次握手和四次挥手过程管理。这些过程确保了连接的稳定建立和优雅关闭。
  • 超时和重传

    • 如果发送的数据没有得到及时确认,TCP 会自动重传数据,并且随着时间的推移,重传间隔会指数增长。
  • 保活和死锁检测

    • TCP 提供保活(keepalive)机制,以检测死连接。如果连接长时间没有活动,TCP 可以自动关闭连接。
  • 适用场景

    • TCP 适用于需要可靠传输的应用,如 Web 浏览(HTTP)、文件传输(FTP)、邮件传输(SMTP)和远程登录(SSH)。
  • 限制

    • 由于 TCP 是面向连接的协议,它在某些场景下可能不如 UDP 高效,特别是在实时通信或广播通信中。
  • 编程模型

    • TCP 编程通常涉及创建套接字、绑定、监听、连接、数据传输和关闭连接等步骤。

TCP 作为流式协议,其设计目标是提供可靠的数据传输服务。它通过多种机制确保数据的正确、有序传输,并通过拥塞控制和流量控制适应不同的网络条件。


也就是说,内核实现的
TCP 协议将保证将一个
TCP 包发送给另一端。

在这里插入图片描述

如上图:

拥塞控制是确保可靠数据传输协议有效运作的关键组成部分,因此,在TCP中,发送缓冲区和接收缓冲区成为了必不可少的元素。

在标准的Linux操作系统中,TCP的发送缓冲区和接收缓冲区默认的大小通常被设置为208KB。这意味着,如果进程A没有及时从其接收缓冲区中提取数据,那么传入的数据将继续在缓冲区内积累,直至达到其容量上限。


2、TCP 流式协议引发“粘包问题”

在网络上传输的数据本质上是二进制格式的,这意味着接收缓冲区里存放的内容同样是以二进制数据的形式存在。

数据根据其到达的顺序被依次放入接收缓冲区,这就可能导致所谓的“粘包”现象。

“粘包”这个词更像是一个方便描述的概念,实际上它并非一个正式的术语。

这个说法类似于描述从水龙头流出的水“粘”在一起,这当然不是字面上的粘连,而是用来形象地表达数据包在缓冲区中连续存放的情况。

简而言之,流式协议引发的一个问题是,我们如何识别接收缓冲区中的数据分别属于哪个TCP数据包?


在这里插入图片描述

以一个具体示例来说明,如果客户端向服务器发送了三个TCP数据包,分别包含内容QA、QB、QC,每个内容代表一个不同的请求。那么在服务器端的接收缓冲区(RecvBuffer)中,这些数据可能会连续排列成一串数据QAQBQC。服务器需要将这串连续的数据正确地拆分成三个独立的数据包,并对每个数据包进行相应的处理。


3、如何解决“粘包”问题?

通常,为了解决如何从接收缓冲区中区分不同TCP数据包的问题,我们会采用 包头+包体 的方式 。


在这里插入图片描述


正如上图所演示:在每个数据包前添加一个固定长度的包头,并在包头中记录数据包的总长度。包体部分则承载实际要传输的数据。

处理接收缓冲区数据的步骤如下:

  • Step 1: 首先从接收缓冲区读取固定大小的包头(例如20字节)。

  • Step 2: 解析包头,从中获取数据包的总长度,这里假设包头中包含的数据长度字段名为Header.Length

  • Step 3 : 根据Header.Length的值,确定接下来需要从接收缓冲区读取的数据量。

    例如,如果包头之后的数据总长度为1048字节,减去已读取的20字节包头,还需读取1028字节的数据。


通过这种方式,即使数据在接收缓冲区中是连续存放的,服务器也能够根据每个数据包的包头信息,正确地拆分和识别出独立的数据包。


二、recv()函数详解


recv() 函数是专用于
scoket 上的
read 操作,用于接收 TCP 套接字数据的系统调用。它在服务器端或客户端程序中用来从连接的对端读取数据,本质上是从接收缓冲区读取数据 ,该系统调用将返回实际读取的字节数,其值可能会小于传入的
length 参数。


以下是 recv() 函数的详细说明:

(1)、函数原型

ssize_t recv(int sockfd, void *buf, size_t len, int flags);

(2)、参数

  • sockfd:套接字描述符,表示要从中读取数据的 TCP 套接字。

  • buf:指向一个缓冲区的指针,用于存储接收到的数据。

  • len:缓冲区的大小,即 buf 可以存储的最大字节数。

  • flags:用来修改recv()行为的选项。常用的值包括:

    • 0:正常接收数据。

    • MSG_PEEK:窥视接收的数据,不从接收缓冲区中移除数据。

    • MSG_WAITALL:等待直到接收到 len 个字节的数据,或者出现错误。


(3)、返回值

  • 成功时,返回接收到的字节数,该值通常小于或等于 len

  • 失败时,返回 -1,并设置全局变量 errno 以指示错误类型。


(4)、错误处理

  • EAGAINEWOULDBLOCK:在非阻塞模式下,如果操作会阻塞,则返回此错误。
  • ECONNRESET:远程主机强行关闭了一个现有的连接。
  • ENOTCONN:套接字未连接,即未调用 connect()accept()
  • ENOTSOCKsockfd 不是一个套接字。

(5)、使用场景

  • 主要用于 TCP 套接字上的数据接收。对于 UDP 套接字,通常使用 recvfrom() 函数。

(6)、阻塞和非阻塞行为

  • 默认情况下,recv() 是阻塞的,它会等待直到至少接收到一个字节的数据。
  • 对于非阻塞套接字,如果接收缓冲区中没有数据,recv() 会立即返回,返回值为 0。

(7)、与 read() 的区别

  • read() 是一个通用的系统调用,用于读取文件描述符,而 recv() 专门用于套接字。

  • recv() 可以处理套接字选项和状态,而 read() 不能。


(8)、示例代码

接下来我们通过一个简单的客户端示例,演示如何使用recv()接收数据:

#include <iostream>
#include <sys/socket.h>
#include <arpa/inet.h>
#include <unistd.h>
#include <cstring>int main() {int sockfd = socket(AF_INET, SOCK_STREAM, 0);struct sockaddr_in servaddr;memset(&servaddr, 0, sizeof(servaddr));servaddr.sin_family = AF_INET;servaddr.sin_addr.s_addr = inet_addr("127.0.0.1");servaddr.sin_port = htons(8000);connect(sockfd, (struct sockaddr*)&servaddr, sizeof(servaddr));char buffer[1024];ssize_t nbytes = recv(sockfd, buffer, sizeof(buffer), 0);buffer[nbytes] = '\0';std::cout << "Received: " << buffer << std::endl;close(sockfd);return 0;
}

在这个例子中,客户端连接到本机的8000端口,然后使用recv()接收数据并输出到控制台。你可以自行运行并在服务器端发送数据,以验证recv()的效果。


(9)、注意事项:

  • 接收到的数据可能小于请求的长度,因此应用程序应该总是检查返回值。
  • recv() 可以与 select()poll() 结合使用,以实现更复杂的非阻塞操作。

recv() 函数是 TCP 网络编程中接收数据的基本工具。正确使用它需要考虑套接字的状态、缓冲区的大小以及可能的错误情况。


三、send()函数解析


send() 函数专用于
scoket 上的
write
操作,在套接字上发送数据的系统调用。

本质上是向发送缓冲区中写入数据,内核在发送
TCP 数据时,通常会使用
Nagle
算法把多个小的数据包合并成一个发送给另一端,以提高效率。

它是 TCP 网络编程中发送数据的基本工具之一。

以下是 send() 函数的详细解析:


(1)、函数原型

ssize_t send(int sockfd, const void *buf, size_t len, int flags);

(2)、参数

  • sockfd:套接字描述符,表示要从中发送数据的套接字。
  • buf:指向要发送数据缓冲区的指针。
  • len:要发送数据的长度,单位为字节。
  • flags:用来修改发送行为的选项。常用的值包括:
    • 0:正常发送数据。
    • MSG_DONTWAIT:使 send() 调用非阻塞。
    • MSG_MORE:暗示更多的数据要发送,可以用于优化传输效率。

(3)、返回值

  • 成功时,返回已发送的字节数,该值通常小于或等于 len
  • 失败时,返回 -1,并设置全局变量 errno 以指示错误类型。

(4)、错误处理

  • EAGAINEWOULDBLOCK:在非阻塞模式下,如果操作会阻塞,则返回此错误。

  • ECONNRESET:远程主机强行关闭了连接。

  • ENOTCONN:套接字未连接到任何远程主机。

  • ENOTSOCKsockfd 不是一个套接字。


(5)、使用场景

  • 主要用于已连接的 TCP 套接字上的数据发送。对于 UDP 套接字,通常使用 sendto() 函数。


(6)、阻塞和非阻塞行为

  • 默认情况下,send() 是阻塞的,它会等待直到数据被发送。

  • 对于非阻塞套接字,如果数据不能立即发送,send() 会返回 -1 并设置 errnoEAGAINEWOULDBLOCK


(7)、与 write() 的区别

  • write() 是一个通用的系统调用,用于写文件描述符,而 send() 专门用于套接字。

  • send() 可以处理套接字选项和状态,而 write() 不能。


(8)、示例代码

const char* message = "Hello, World!";
ssize_t nbytes = send(sockfd, message, strlen(message), 0);
if (nbytes < 0) {perror("send failed");exit(EXIT_FAILURE);
}

(9)、注意事项

  • 发送的数据可能因为网络或其他原因没有立即发送出去,send() 只是将数据交给了内核。
  • 对于非阻塞套接字,可以使用 select()poll() 来等待套接字变得可写。

send() 函数是 TCP 网络编程中发送数据的基础。正确使用它需要考虑套接字的状态、数据的长度以及可能的错误情况。此外,send()recv() 配合使用,可以实现完整的数据发送和接收流程。

需要注意的是,recv()和send()都可能出现中断或部分接收/发送的情况,因此在实际应用中需要循环调用,确保所有数据都被完整传输。此外,它们还有一些特殊的flags可以控制阻塞行为等,具体用法视实际情况而定。


四、权威之作待续


恭喜你已经完整学习了TCP 流式协议,什么是粘包?粘包如何处理?以及recv()和send()函数,这标志着你正在向Socket编程高手的行列迈进。当然,Socket编程远不止如此,还有select()、poll()等I/O复用函数、Unix域Socket编程、原始套接字编程等更高阶的技巧等待你去发掘。我们期待在不久的将来,为你呈现一部Socket编程的不朽权威之作。敬请期待!


相关文章:

Socket编程权威指南(二)完美掌握TCP流式协议及Socket编程的recv()和send()

在上一篇文章中&#xff0c;我们学习了Socket编程的基础知识&#xff0c;包括创建Socket、绑定地址、监听连接、接收连接等操作。然而&#xff0c;真正的套接字编程远不止于此。本文将重点介绍TCP 流式协议&#xff0c;什么是粘包问题&#xff1f;如何解决粘包问题 &#xff1f…...

当C++的static遇上了继承

比如我们想要统计下当前类被实例化了多少次&#xff0c;我们通常会这么写 class A { public:A() { Count_; }~A() { Count_--; }int GetCount() { return Count_; }private:static int Count_; };class B { public:B() { Count_; }~B() { Count_--; }int GetCount() { return …...

Three.js中的Raycasting技术:实现3D场景交互事件的Raycaster详解

前言 在Web开发中&#xff0c;Three.js是一个极为强大的库&#xff0c;它让开发者能够轻松地在浏览器中创建和展示3D图形。随着3D技术在网页设计、游戏开发、数据可视化等领域的广泛应用&#xff0c;用户与3D场景的交互变得日益重要。而要实现这种交互&#xff0c;一个核心的技…...

5 分钟内构建一个简单的基于 Python 的 GAN

文章目录 一、说明二、代码三、训练四、后记 一、说明 生成对抗网络&#xff08;GAN&#xff09;因其能力而在学术界引起轩然大波。机器能够创作出新颖、富有灵感的作品&#xff0c;这让每个人都感到敬畏和恐惧。因此&#xff0c;人们开始好奇&#xff0c;如何构建一个这样的网…...

智能硬件产品中常用的参数存储和管理方案

一、有哪些参数需要管理? 在智能硬件产品中,一般有三类数据需要存储并管理: 1. 系统设置数据 系统设置数据是指产品自身正常工作所依赖的一些参数。 这类数据的特点:只能在生产过程中修改,出厂后用户无权限修改。 比如:产品SN、产品密钥/token/license、传感器校准值…...

SwiftUI中Mask修饰符的理解与使用

Mask是一种用于控制图形元素可见性的图形技术&#xff0c;使用给定视图的alpha通道掩码该视图。在SwiftUI中&#xff0c;它类似于创建一个只显示视图的特定部分的模板。 Mask修饰符的定义&#xff1a; func mask<Mask>(alignment: Alignment .center,ViewBuilder _ ma…...

全光网络与传统网络架构的对比分析

随着信息技术的飞速发展&#xff0c;网络已经成为我们日常生活中不可或缺的一部分。在这个信息爆炸的时代&#xff0c;全光网络和传统网络架构作为两种主流的网络技术&#xff0c;各有其特点和适用范围。本文将对这两种网络架构进行详细的对比分析&#xff0c;帮助读者更好地了…...

stack overflow复现

当你在内存的栈中&#xff0c;存放了太多元素&#xff0c;就有可能在造成 stack overflow这个问题。 今天看看如何复现这个问题。 下图&#xff0c;是我写的程序&#xff0c;不断的创造1KB的栈&#xff0c;来看看执行了多少次&#xff0c;无限循环。 最后结果是7929kB时, 发…...

mybatis使用笔记

文章目录 打印sql日志mybatis-config.xml方式application.yml里面配置配置类配置方式 其他扫描方式官网文档 mybatis用了那么久&#xff0c;实际一直不明白&#xff0c;做个笔记吧。 打印sql日志 实测&#xff0c;mybatis-config.xml方式好用(记得注掉yml里的相关配置) mybat…...

学习笔记——路由网络基础——路由概述

一、路由概述 1、路由定义与作用 路由(routing)是指导报文转发路径信息&#xff0c;通过路由可以确认转发IP报文的路径。 路由&#xff1a;是指路由器从一个接口上收到数据包&#xff0c;根据数据包的目的地址进行定向并转发到另一个接口的过程。 路由(routing)的定义是指分…...

在量子计算时代,大数据技术将面临哪些挑战和机遇?

在量子计算时代&#xff0c;大数据技术将面临以下挑战和机遇&#xff1a; 挑战&#xff1a; 处理速度&#xff1a;量子计算机具有极高的计算速度&#xff0c;大数据技术需要适应和充分利用这种速度。现有的大数据算法和架构可能需要重新设计和优化&#xff0c;以充分发挥量子计…...

怎么换自己手机的ip地址

在互联网时代&#xff0c;IP地址已经成为了我们数字身份的一部分。无论是浏览网页、下载文件还是进行在线交流&#xff0c;我们的IP地址都在默默发挥着作用。然而&#xff0c;有时出于安全或隐私保护的考虑&#xff0c;我们可能需要更换手机的IP地址。那么&#xff0c;如何轻松…...

搭建 Langchain-Chatchat 详细过程

前言 本文参考官网和其他多方教程&#xff0c;将搭建 Langchain-Chatchat 的详细步骤进行了整理&#xff0c;供大家参考。 我的硬件 4090 显卡win10 专业版本 搭建环境使用 chatglm2-6b 模型 1. 创建虚拟环境 chatchat &#xff0c;python 3.9 以上 conda create -n chat…...

C++期末复习

目录 1.基本函数 2.浅拷贝和深拷贝 3.初始化列表 4.const关键字的使用 5.静态成员变量和成员函数 6.C对象模型 7.友元 8.自动类型转换 9.继承 1.基本函数 &#xff08;1&#xff09;构造函数&#xff0c;这个需要注意的就是我们如果使用类名加括号&#xff0c;括号里面…...

2005-2022年各省居民人均消费支出数据(无缺失)

2005-2022年各省居民人均消费支出数据&#xff08;无缺失&#xff09; 1、时间&#xff1a;2005-2022年 2、来源&#xff1a;国家统计局、统计年鉴 3、指标&#xff1a;全体居民人均消费支出 4、范围&#xff1a;31省 5、缺失情况&#xff1a;无缺失 6、指标解释 居民人…...

swaggerHole:针对swaggerHub的公共API安全扫描工具

关于swaggerHole swaggerHole是一款针对swaggerHub的API安全扫描工具&#xff0c;该工具基于纯Python 3开发&#xff0c;可以帮助广大研究人员检索swaggerHub上公共API的相关敏感信息&#xff0c;整个任务过程均以自动化形式实现&#xff0c;且具备多线程特性和管道模式。 工具…...

【Rust】——面向对象设计模式的实现

&#x1f3bc;个人主页&#xff1a;【Y小夜】 &#x1f60e;作者简介&#xff1a;一位双非学校的大二学生&#xff0c;编程爱好者&#xff0c; 专注于基础和实战分享&#xff0c;欢迎私信咨询&#xff01; &#x1f386;入门专栏&#xff1a;&#x1f387;【MySQL&#xff0…...

C#朗读语音

最近有个需求&#xff0c;需要在C#程序发生异常时候&#xff0c;朗读文字&#xff0c;C#提供了.net framework可以提供简单的语音朗读功能。 引入依赖 using System.Media; using System.Speech.Synthesis; using System.Runtime.InteropServices; //报警音量 SystemSounds.…...

c++ 简单的日志类 CCLog

此日志类&#xff0c;简单地实现了向标准输出控制台和文件输出日志信息的功能&#xff0c;并能在这两者之间进行切换输出&#xff0c;满足输出日志的不同需求。 代码如下&#xff1a; /** CCLog.h* c_common_codes** Created by xichen on 12-1-12.* Copyright 2012 cc_te…...

一文读懂 Compose 支持 Accessibility 无障碍的原理

前言 众所周知&#xff0c;Compose 作为一种 UI 工具包&#xff0c;向开发者提供了实现 UI 的基本功能。但其实它还默默提供了很多其他能力&#xff0c;其中之一便是今天需要讨论的&#xff1a;Android 特色的 Accessibility 功能。 采用 Compose 搭建的界面&#xff0c;完美…...

观成科技:隐蔽隧道工具Ligolo-ng加密流量分析

1.工具介绍 Ligolo-ng是一款由go编写的高效隧道工具&#xff0c;该工具基于TUN接口实现其功能&#xff0c;利用反向TCP/TLS连接建立一条隐蔽的通信信道&#xff0c;支持使用Let’s Encrypt自动生成证书。Ligolo-ng的通信隐蔽性体现在其支持多种连接方式&#xff0c;适应复杂网…...

Docker 离线安装指南

参考文章 1、确认操作系统类型及内核版本 Docker依赖于Linux内核的一些特性&#xff0c;不同版本的Docker对内核版本有不同要求。例如&#xff0c;Docker 17.06及之后的版本通常需要Linux内核3.10及以上版本&#xff0c;Docker17.09及更高版本对应Linux内核4.9.x及更高版本。…...

React Native 开发环境搭建(全平台详解)

React Native 开发环境搭建&#xff08;全平台详解&#xff09; 在开始使用 React Native 开发移动应用之前&#xff0c;正确设置开发环境是至关重要的一步。本文将为你提供一份全面的指南&#xff0c;涵盖 macOS 和 Windows 平台的配置步骤&#xff0c;如何在 Android 和 iOS…...

第一篇:Agent2Agent (A2A) 协议——协作式人工智能的黎明

AI 领域的快速发展正在催生一个新时代&#xff0c;智能代理&#xff08;agents&#xff09;不再是孤立的个体&#xff0c;而是能够像一个数字团队一样协作。然而&#xff0c;当前 AI 生态系统的碎片化阻碍了这一愿景的实现&#xff0c;导致了“AI 巴别塔问题”——不同代理之间…...

C# SqlSugar:依赖注入与仓储模式实践

C# SqlSugar&#xff1a;依赖注入与仓储模式实践 在 C# 的应用开发中&#xff0c;数据库操作是必不可少的环节。为了让数据访问层更加简洁、高效且易于维护&#xff0c;许多开发者会选择成熟的 ORM&#xff08;对象关系映射&#xff09;框架&#xff0c;SqlSugar 就是其中备受…...

LINUX 69 FTP 客服管理系统 man 5 /etc/vsftpd/vsftpd.conf

FTP 客服管理系统 实现kefu123登录&#xff0c;不允许匿名访问&#xff0c;kefu只能访问/data/kefu目录&#xff0c;不能查看其他目录 创建账号密码 useradd kefu echo 123|passwd -stdin kefu [rootcode caozx26420]# echo 123|passwd --stdin kefu 更改用户 kefu 的密码…...

七、数据库的完整性

七、数据库的完整性 主要内容 7.1 数据库的完整性概述 7.2 实体完整性 7.3 参照完整性 7.4 用户定义的完整性 7.5 触发器 7.6 SQL Server中数据库完整性的实现 7.7 小结 7.1 数据库的完整性概述 数据库完整性的含义 正确性 指数据的合法性 有效性 指数据是否属于所定…...

人工智能(大型语言模型 LLMs)对不同学科的影响以及由此产生的新学习方式

今天是关于AI如何在教学中增强学生的学习体验&#xff0c;我把重要信息标红了。人文学科的价值被低估了 ⬇️ 转型与必要性 人工智能正在深刻地改变教育&#xff0c;这并非炒作&#xff0c;而是已经发生的巨大变革。教育机构和教育者不能忽视它&#xff0c;试图简单地禁止学生使…...

多模态图像修复系统:基于深度学习的图片修复实现

多模态图像修复系统:基于深度学习的图片修复实现 1. 系统概述 本系统使用多模态大模型(Stable Diffusion Inpainting)实现图像修复功能,结合文本描述和图片输入,对指定区域进行内容修复。系统包含完整的数据处理、模型训练、推理部署流程。 import torch import numpy …...

Caliper 配置文件解析:fisco-bcos.json

config.yaml 文件 config.yaml 是 Caliper 的主配置文件,通常包含以下内容: test:name: fisco-bcos-test # 测试名称description: Performance test of FISCO-BCOS # 测试描述workers:type: local # 工作进程类型number: 5 # 工作进程数量monitor:type: - docker- pro…...