pytorch 笔记:pytorch 优化内容(更新中)
1 Tensor创建类
1.1 直接创建Tensor,而不是从Python或Numpy中转换
- 不要使用原生Python或NumPy创建数据,然后将其转换为
torch.Tensor 直接用torch.Tensor创建- 或者直接:torch.empty(), torch.zeros(), torch.full(), torch.ones(), torch.eye(), torch.randint(), torch.rand(), torch.randn()
1.2 直接在GPU中创建,减少.to(device)
ok的:
tensor = torch.rand([10, 5], device=torch.device('cuda:0'))
尽量避免的:
cuda_tensor.cpu()
cuda_tensor.to_device('cpu')
cpu_tensor.cuda()
cpu_tensor.to_device('cuda')
cpu_tensor.to(device)
1.3 使用 torch.from_numpy(numpy_array)和torch.as_tensor(others)代替 torch.tensor
torch.tensor()会拷贝数据
2 Dataloader类
2.1 pin_memory
Dataloader(dataset, pin_memory=True)
- 在深度学习中,使用GPU进行训练时经常需要将数据从CPU传输到GPU。
- 由于GPU无法直接访问CPU的可分页(非固定)内存,这会导致数据传输效率不高。
- 可分页内存是指操作系统可以将其页(即数据块)移出到虚拟内存的物理内存。
- 设置
pin_memory=True的作用是在数据从CPU传输到GPU之前,先将数据从可分页内存转移到固定内存(也称为页面锁定内存)。- 固定内存是一种特殊类型的内存,操作系统不会将其页移出到虚拟内存,这样GPU可以更快地访问这部分内存。
- 使用固定内存可以避免数据在传输过程中的额外拷贝,因此可以加快数据从CPU到GPU的传输速度。

3 其他
3.1 torch.backends.cudnn.benchmark 设置为 True
- 在深度学习中,卷积操作是最计算密集的部分之一。NVIDIA 的 cuDNN 库提供了多种卷积算法,每种算法都适用于不同的硬件和卷积配置(如内核大小、步幅、填充等)
-
当
torch.backends.cudnn.benchmark设置为False(默认值)时,PyTorch/cuDNN 会选择一个合适的、通用的卷积算法来执行操作,而不会根据具体的网络配置进行优化。-
这种选择通常比较保守,确保了在大多数情况下的可靠性。
-
-
当设置为
True时,PyTorch 会在程序第一次执行每种卷积配置时启用一个自动调优器,这个调优器通过实际运行不同的卷积算法来测试它们的性能。-
然后,它选择最快的算法,并在后续的训练过程中使用这一算法。
-
这个“基准测试”过程只在第一次遇到新的卷积配置时进行。
-
-
如果模型的输入大小(包括批大小、图像尺寸等)在整个训练过程中保持不变,开启
torch.backends.cudnn.benchmark通常可以带来性能提升。这是因为一旦为每种卷积配置选择了最优算法,就不需要再进行调整,每次执行同样的卷积操作都会使用这一最优算法。
参考内容:mp.weixin.qq.com/s?__biz=MzA4ODUxNjUzMQ==&mid=2247500198&idx=1&sn=0eb717d910f4e8452664ac520679b1e1&chksm=902a737aa75dfa6c3ea3e6fad7c4f4799304ccd4d21277d615e7200266775c8fdf480cb66f5a&scene=126&sessionid=1690516061#rd
相关文章:
pytorch 笔记:pytorch 优化内容(更新中)
1 Tensor创建类 1.1 直接创建Tensor,而不是从Python或Numpy中转换 不要使用原生Python或NumPy创建数据,然后将其转换为torch.Tensor直接用torch.Tensor创建或者直接:torch.empty(), torch.zeros(), torch.full(), torch.ones(), torch.…...
vue 创建一个新项目 以及 手动配置选项
【Vue】3.0 项目创建 自定义配置_vue3.0-CSDN博客...
c#快速获取超大文件夹文件名
c#快速获取超大文件夹文件名 枚举集合速度快:(10万个文件) //by txwtech IEnumerable<string> files2 Directory.EnumerateFiles("d:\aa", "*.xml", SearchOption.TopDirectoryOnly);//过滤指定查询xml文件 慢: var fi…...
华为OD技术面试-最小异或-2024手撕代码真题
题目:最小异或 给你两个正整数 num1 和 num2 ,找出满足下述条件的正整数 x : x 的置位数和 num2 相同,且 x XOR num1 的值 最小 注意 XOR 是按位异或运算。 返回整数 x 。题目保证,对于生成的测试用例, x 是 唯一确定 的。 整数的 置位数 是其二进制表示中 1 的数目。 示…...
基于SpringBoot+Vue单位考勤系统设计和实现(源码+LW+调试文档+讲解等)
💗博主介绍:✌全网粉丝1W,CSDN作者、博客专家、全栈领域优质创作者,博客之星、平台优质作者、专注于Java、小程序技术领域和毕业项目实战✌💗 🌟文末获取源码数据库🌟 感兴趣的可以先收藏起来,还…...
Anaconda软件:安装、管理python相关包
Anaconda的作用 一个python环境中需要有一个解释器, 和一个包集合. 解释器: 根据python的版本大概分为2和3. python2和3之间无法互相兼容, 也就是说用python2语法写出来的脚本不一定能在python3的解释器中运行. 包集合:包含了自带的包和第三方包, 第三…...
pinia 重置状态插件
一、前言 测试提出,登出登录后,再次进入页面后。页面的查询项非初始状态。检查后发现,是因为查询项的值存到了store呢,从store中获取,故需要一个重置store的方法 二、pinia 查阅pinia官网后,发现pinia提…...
一千题,No.0049(跟奥巴马一起编程)
美国总统奥巴马不仅呼吁所有人都学习编程,甚至以身作则编写代码,成为美国历史上首位编写计算机代码的总统。2014 年底,为庆祝“计算机科学教育周”正式启动,奥巴马编写了很简单的计算机代码:在屏幕上画一个正方形。现在…...
《python程序语言设计》2018版第5章第46题均值和标准方差-上部(我又一次被作者的出题击倒)
第N次被作者打倒了,第5章46题解题上集的记录 计算均值的代码段 step_num 0num_c 0 pow_c 0 while step_num < 10:a eval(input("Enter number is: "))num_c apow_c pow(a, 2)step_num 1 t2 num_c / 10这个结果和书里的答案差一点。书里写的是…...
自己做的精灵图制作,图片合成,卓宠,窗口置顶,磁力链下载等工具软件
欢迎使用和提bug,才v1.0.2,有新奇的自己需要的功能可以提给我,我看看能不能做。 网站地址 github...
C++协程
什么是协程 协程(Coroutine)是程序组件,可以在执行过程中暂停并在稍后继续执行。与传统的子例程(如函数或过程)不同,子例程一旦调用,必须等其返回后才能继续执行调用它的代码。协程则可以在执行…...
linux系统——ping命令
ping命令可以用来判断对远端ip的连通性,可以加域名也可以加公共ip地址 这里发送出56字节,返回64字节...
vue3第三十七节(自定义插件之自定义指令)防重指令
引言:自定义指令,我们可以通过插件的形式进行全局注册: 例如:在提交按钮请求接口时候,为了防止重复提交,而导致的请求资源浪费,或者是新增提交时候,防止新增相同的数据。 我们的全局…...
面试高频问题----5
一、线程池参数的执行顺序 1.如果线程池中的线程数量小于核心线程数,则创建新的线程来处理任务 2.如果线程池中的线程数量等于核心线程数,但工作队列未满,将任务放入工作队列中执行 3.如果工作队列已满,但线程数小于最大线程数…...
计算机网络 —— 网络层(子网掩码和子网划分)
计算机网络 —— 网络层(子网掩码和子网划分) 网络地址转换NAT子网掩码和子网划分举个例子第一步:看类型第二步:从主机号开始比对第三步:去头去尾 我们今天来看子网掩码和子网划分: 网络地址转换NAT 网络…...
2024 IDEA最新永久使用码教程(2099版)
本篇文章我就来分享一下2024年当前最新版 IntelliJ IDEA 最新注册码,教程如下,可免费永久,亲测有效,适合Windows和Mac。 本教程适用于 J B 全系列产品,包括 Pycharm、IDEA、WebStorm、Phpstorm、Datagrip、RubyMine、…...
http协议,tomcat的作用
HTTP 概念:Hyper Text Transfer Protocol,超文本传输协议,规定了浏览器和服务器之间数据传输的规则。 特点: 1.基于TCP协议:面向连接,安全 2. 基于请求-响应模型的:一次请求对应一次响应 3HTTP协议是无状态的协议:对于事务处理没有记忆能…...
有哪些针对平台端口的常见攻击手段
针对平台端口的攻击可以通过多种手段进行,这些手段涵盖了从扫描探测到利用漏洞入侵的整个过程。以下是一些常见的攻击手段及其简要描述: 端口扫描攻击: 攻击者使用端口扫描工具(如Nmap)探测目标系统开放的端口。通过分…...
Xcode下载安装
1.Xcode可用版本判断: 2.Xcode下载安装: 方案1:AppStore 下载更新 若方案1失败则 方案2:指定版本Xcode包下载解压安装 苹果下载 3.Xcode命令行工具插件安装 xcode-select --install 备注: xcode_x.x.x.xip(压缩包存在时效性(使用前24h/…...
【 k8s 标签与选择器 】
一、标签(Label) 用于给Kubernetes资源(如Pod、Service、Deployment等)打上自定义的键值对标识。以便更方便地管理和操作这些资源。 在各类资源的 metadata.labels 中进行配置。可以通过改配置文件的方式打标签。 apiVersion: v1…...
C++_核心编程_多态案例二-制作饮品
#include <iostream> #include <string> using namespace std;/*制作饮品的大致流程为:煮水 - 冲泡 - 倒入杯中 - 加入辅料 利用多态技术实现本案例,提供抽象制作饮品基类,提供子类制作咖啡和茶叶*//*基类*/ class AbstractDr…...
【Linux】C语言执行shell指令
在C语言中执行Shell指令 在C语言中,有几种方法可以执行Shell指令: 1. 使用system()函数 这是最简单的方法,包含在stdlib.h头文件中: #include <stdlib.h>int main() {system("ls -l"); // 执行ls -l命令retu…...
使用分级同态加密防御梯度泄漏
抽象 联邦学习 (FL) 支持跨分布式客户端进行协作模型训练,而无需共享原始数据,这使其成为在互联和自动驾驶汽车 (CAV) 等领域保护隐私的机器学习的一种很有前途的方法。然而,最近的研究表明&…...
dedecms 织梦自定义表单留言增加ajax验证码功能
增加ajax功能模块,用户不点击提交按钮,只要输入框失去焦点,就会提前提示验证码是否正确。 一,模板上增加验证码 <input name"vdcode"id"vdcode" placeholder"请输入验证码" type"text&quo…...
全志A40i android7.1 调试信息打印串口由uart0改为uart3
一,概述 1. 目的 将调试信息打印串口由uart0改为uart3。 2. 版本信息 Uboot版本:2014.07; Kernel版本:Linux-3.10; 二,Uboot 1. sys_config.fex改动 使能uart3(TX:PH00 RX:PH01),并让boo…...
laravel8+vue3.0+element-plus搭建方法
创建 laravel8 项目 composer create-project --prefer-dist laravel/laravel laravel8 8.* 安装 laravel/ui composer require laravel/ui 修改 package.json 文件 "devDependencies": {"vue/compiler-sfc": "^3.0.7","axios": …...
浪潮交换机配置track检测实现高速公路收费网络主备切换NQA
浪潮交换机track配置 项目背景高速网络拓扑网络情况分析通信线路收费网络路由 收费汇聚交换机相应配置收费汇聚track配置 项目背景 在实施省内一条高速公路时遇到的需求,本次涉及的主要是收费汇聚交换机的配置,浪潮网络设备在高速项目很少,通…...
Java求职者面试指南:计算机基础与源码原理深度解析
Java求职者面试指南:计算机基础与源码原理深度解析 第一轮提问:基础概念问题 1. 请解释什么是进程和线程的区别? 面试官:进程是程序的一次执行过程,是系统进行资源分配和调度的基本单位;而线程是进程中的…...
【JavaSE】多线程基础学习笔记
多线程基础 -线程相关概念 程序(Program) 是为完成特定任务、用某种语言编写的一组指令的集合简单的说:就是我们写的代码 进程 进程是指运行中的程序,比如我们使用QQ,就启动了一个进程,操作系统就会为该进程分配内存…...
探索Selenium:自动化测试的神奇钥匙
目录 一、Selenium 是什么1.1 定义与概念1.2 发展历程1.3 功能概述 二、Selenium 工作原理剖析2.1 架构组成2.2 工作流程2.3 通信机制 三、Selenium 的优势3.1 跨浏览器与平台支持3.2 丰富的语言支持3.3 强大的社区支持 四、Selenium 的应用场景4.1 Web 应用自动化测试4.2 数据…...
