当前位置: 首页 > news >正文

java并发-如何保证线程按照顺序执行?

【readme】

  1. 使用只有单个线程的线程池(最简单
  2. Thread.join() 
  3. 可重入锁 ReentrantLock + Condition 条件变量(多个) ; 原理如下:
    1. 任务1执行前在锁1上阻塞;执行完成后在锁2上唤醒;
    2. 任务2执行前在锁2上阻塞,执行完成后在锁3上唤醒;
    3. 任务n执行前在锁n上阻塞,执行完成后在锁n+1上唤醒;
    4. 以此类推 ..............
    5. 补充:
      1. 第1条任务执行前可以不阻塞,但执行完成后必须唤醒;(如果要阻塞,则可以让主线程来唤醒第1条任务);
      2. 补充: 最后一条任务执行后可以不唤醒,但执行前必须阻塞; (如果要唤醒,则最后一条任务执行完成后唤醒主线程)
  4. 与可重入锁类似,可以使用monitor监视器锁(多个);
  5. 与可重入锁类似,使用 Semaphore 信号量(多个);
  6. 与可重入锁类似,CountDownLatch : 倒计时锁存器(多个); 
  7. 与可重入锁类似,CyclicBarrier 循环栅栏(多个) ;

【1】单个线程的线程池

参数设置:核心线程数=1, 最大线程数=1,就能保证线程池中只有1个线程在运行;

public class OrderlySingleThreadPoolTest {public static void main(String[] args) {ThreadPoolExecutor singleThreadPool =new ThreadPoolExecutor(1, 1, 0, TimeUnit.MILLISECONDS, new ArrayBlockingQueue<>(100));singleThreadPool.execute(new Task(1));singleThreadPool.execute(new Task(2));singleThreadPool.execute(new Task(3));singleThreadPool.execute(new Task(4));singleThreadPool.execute(new Task(5));singleThreadPool.shutdown();}private static class Task implements Runnable {int order; // 执行序号Task(int order) {this.order = order;}@Overridepublic void run() {try {TimeUnit.SECONDS.sleep(3);} catch (InterruptedException e) {throw new RuntimeException(e);}PrintUtils.print("序号=" + order + "执行完成");}}
}

【打印结果】

2024-06-09 16:07:59.398 序号=1执行完成
2024-06-09 16:08:02.404 序号=2执行完成
2024-06-09 16:08:05.411 序号=3执行完成
2024-06-09 16:08:08.425 序号=4执行完成
2024-06-09 16:08:11.439 序号=5执行完成

【2】thread.join()

main 调用 t1.join(),则main线程阻塞直到t1线程执行完成;如下。

public class ThreadJoinTest {public static void main(String[] args) {f1();PrintUtils.print("主线程结束");}public static void f1() {Thread t1 = new Thread(()->{try {TimeUnit.SECONDS.sleep(5);PrintUtils.print("t1线程结束");} catch (InterruptedException e) {throw new RuntimeException(e);}});t1.start();try {t1.join();} catch (InterruptedException e) {throw new RuntimeException(e);}}
}
2024-06-09 07:44:38.474 t1线程结束
2024-06-09 07:44:38.573 主线程结束

【3】可重入锁+条件变量实现多个线程顺序执行

1. 补充:

condition.await() 调用前需要获取锁;调用后释放锁(其他线程可以获取该锁,因此得名为可重入),但当前线程阻塞

condition.signal() 调用前需要获取锁;调用后释放锁;

public class OrderlyReentrantLockTest {private static Condition[][] build(ReentrantLock reentrantLock, int num) {Condition[][] arr = new Condition[num][2];arr[0] = new Condition[]{null, reentrantLock.newCondition()};int i = 1;for (; i < num - 1; i++) {arr[i] = new Condition[]{arr[i - 1][1], reentrantLock.newCondition()};}arr[i] = new Condition[]{arr[i - 1][1], null};return arr;}public static void main(String[] args) {int threadNum = 5;ThreadPoolExecutor threadPool =new ThreadPoolExecutor(threadNum, threadNum, 0, TimeUnit.MILLISECONDS, new ArrayBlockingQueue<>(100));ReentrantLock reentrantLock = new ReentrantLock(true);AtomicInteger unWaitNum = new AtomicInteger(threadNum);// 构建条件变量数组Condition[][] conditionTwoArr = build(reentrantLock, threadNum);// 提交任务for (int order = threadNum; order >= 1; order--) {OrderlyTask orderlyTask = new OrderlyTask(reentrantLock, conditionTwoArr[order - 1], order, unWaitNum);threadPool.execute(orderlyTask);// 阻塞成功,才提交下一个任务while (unWaitNum.get() == threadNum) ; // 这里可能死循环,但可以新增超时重试机制来处理PrintUtils.print("阻塞成功,线程order=" + order);} threadPool.shutdown();}private static class OrderlyTask implements Runnable {private ReentrantLock lock;private Condition[] conditions;private int order; // 执行序号private AtomicInteger unWaitNum;OrderlyTask(ReentrantLock reentrantLock, Condition[] conditions, int order, AtomicInteger unWaitNum) {this.lock = reentrantLock;this.conditions = conditions;this.order = order;this.unWaitNum = unWaitNum;}@Overridepublic void run() {lock.lock();try {unWaitNum.decrementAndGet();try {if (conditions[0] != null) {conditions[0].await(); // 在第1个条件变量上阻塞}} catch (Exception e) {unWaitNum.incrementAndGet();throw e;}// 处理业务逻辑TimeUnit.SECONDS.sleep(3);// 唤醒在第2个条件变量上阻塞的线程if (conditions[1] != null) {conditions[1].signal();}} catch (Exception e) {System.err.println(e);} finally {lock.unlock();}PrintUtils.print("执行完成, 线程order=" + order + ", 线程id=" + Thread.currentThread().getName());}}
}

打印结果:

2024-06-09 22:16:00.696 阻塞成功,线程order=5
2024-06-09 22:16:00.698 阻塞成功,线程order=4
2024-06-09 22:16:00.698 阻塞成功,线程order=3
2024-06-09 22:16:00.698 阻塞成功,线程order=2
2024-06-09 22:16:00.698 阻塞成功,线程order=1
2024-06-09 22:16:03.707 执行完成, 线程order=1, 线程id=pool-1-thread-5
2024-06-09 22:16:06.719 执行完成, 线程order=2, 线程id=pool-1-thread-4
2024-06-09 22:16:09.719 执行完成, 线程order=3, 线程id=pool-1-thread-3
2024-06-09 22:16:12.727 执行完成, 线程order=4, 线程id=pool-1-thread-2
2024-06-09 22:16:15.729 执行完成, 线程order=5, 线程id=pool-1-thread-1

【4】使用CountDownLatch倒计时锁存器 

public class OrderlyCountDownLatchTest {private static CountDownLatch[][] build(int num) {CountDownLatch[][] arr = new CountDownLatch[num][2];arr[0] = new CountDownLatch[]{null, new CountDownLatch(1)};int i = 1;for (; i < num - 1; i++) {arr[i] = new CountDownLatch[]{arr[i - 1][1], new CountDownLatch(1)};}arr[i] = new CountDownLatch[]{arr[i - 1][1], null};return arr;}public static void main(String[] args) {int threadNum = 5;ThreadPoolExecutor threadPool =new ThreadPoolExecutor(threadNum, threadNum, 0, TimeUnit.MILLISECONDS, new ArrayBlockingQueue<>(100));AtomicInteger unWaitNum = new AtomicInteger(threadNum);// 构建倒计时锁存器数组CountDownLatch[][] latchArr = build(threadNum);// 提交任务for (int order = threadNum; order >= 1; order--) {OrderlyTask orderlyTask = new OrderlyTask(latchArr[order - 1], order, unWaitNum);threadPool.execute(orderlyTask);// 阻塞成功,才提交下一个任务while (unWaitNum.get() == threadNum) ; // 这里可能死循环,但可以新增超时重试机制来处理PrintUtils.print("阻塞成功,线程order=" + order);}threadPool.shutdown();}private static class OrderlyTask implements Runnable {private CountDownLatch[] latchArr;private int order; // 执行序号private AtomicInteger unWaitNum;OrderlyTask(CountDownLatch[] latchArr, int order, AtomicInteger unWaitNum) {this.latchArr = latchArr;this.order = order;this.unWaitNum = unWaitNum;}@Overridepublic void run() {try {unWaitNum.decrementAndGet();try {if (latchArr[0] != null) {latchArr[0].await(); // 在第1个锁存器上阻塞}} catch (Exception e) {unWaitNum.incrementAndGet();throw e;}// 处理业务逻辑TimeUnit.SECONDS.sleep(3);// 唤醒在第2个条件变量上阻塞的线程if (latchArr[1] != null) {latchArr[1].countDown();}} catch (Exception e) {System.err.println(e);}PrintUtils.print("执行完成, 线程order=" + order + ", 线程id=" + Thread.currentThread().getName());}}
}

打印结果: 
 

2024-06-09 22:35:13.648 阻塞成功,线程order=5
2024-06-09 22:35:13.651 阻塞成功,线程order=4
2024-06-09 22:35:13.651 阻塞成功,线程order=3
2024-06-09 22:35:13.651 阻塞成功,线程order=2
2024-06-09 22:35:13.651 阻塞成功,线程order=1
2024-06-09 22:35:16.664 执行完成, 线程order=1, 线程id=pool-1-thread-5
2024-06-09 22:35:19.676 执行完成, 线程order=2, 线程id=pool-1-thread-4
2024-06-09 22:35:22.682 执行完成, 线程order=3, 线程id=pool-1-thread-3
2024-06-09 22:35:25.684 执行完成, 线程order=4, 线程id=pool-1-thread-2
2024-06-09 22:35:28.688 执行完成, 线程order=5, 线程id=pool-1-thread-1

相关文章:

java并发-如何保证线程按照顺序执行?

【readme】 使用只有单个线程的线程池&#xff08;最简单&#xff09;Thread.join() 可重入锁 ReentrantLock Condition 条件变量&#xff08;多个&#xff09; &#xff1b; 原理如下&#xff1a; 任务1执行前在锁1上阻塞&#xff1b;执行完成后在锁2上唤醒&#xff1b;任务…...

PyCharm中 Fitten Code插件的使用说明一

一. 简介 Fitten Code插件是是一款由非十大模型驱动的 AI 编程助手&#xff0c;它可以自动生成代码&#xff0c;提升开发效率&#xff0c;帮您调试 Bug&#xff0c;节省您的时间&#xff0c;另外还可以对话聊天&#xff0c;解决您编程碰到的问题。 前一篇文章学习了 PyCharm…...

Polar Web【简单】PHP反序列化初试

Polar Web【简单】PHP反序列化初试 Contents Polar Web【简单】PHP反序列化初试思路EXP手动脚本PythonGo 运行&总结 思路 启动环境&#xff0c;显示下图中的PHP代码&#xff0c;于是展开分析&#xff1a; 首先发现Easy类中有魔术函数 __wakeup() &#xff0c;实现的是对成员…...

树莓派4B 零起点(二) 树莓派 更换软件源和软件仓库

目录 一、准备工作&#xff0c;查看自己的树莓派版本 二、安装HTTPS支持 三、更换为清华源 1、更换Debian软件源 2&#xff0c;更换Raspberrypi软件仓库 四、进行软件更新 接前章&#xff0c;我们的树莓派已经启动起来了&#xff0c;接下来要干的事那就是更换软件源和软件…...

Pytorch 实现目标检测二(Pytorch 24)

一 实例操作目标检测 下面通过一个具体的例子来说明锚框标签。我们已经为加载图像中的狗和猫定义了真实边界框&#xff0c;其中第一个 元素是类别&#xff08;0代表狗&#xff0c;1代表猫&#xff09;&#xff0c;其余四个元素是左上角和右下角的(x, y)轴坐标&#xff08;范围…...

如何使用Python中的列表解析(list comprehension)进行高效列表操作

Python中的列表解析&#xff08;list comprehension&#xff09;是一种创建列表的简洁方法&#xff0c;它可以在单行代码中执行复杂的循环和条件逻辑。列表解析提供了一种快速且易于阅读的方式来生成新的列表。 以下是一些使用列表解析进行高效列表操作的示例&#xff1a; 1.…...

java使用websocket遇到的问题

java使用websocket的bug 1 websocket连接正常但是收不到服务端发出的消息java的websocket并发的时候导致连接断开&#xff08;看着连接是正常的&#xff0c;但是实际上已经断开&#xff09; 1 websocket连接正常但是收不到服务端发出的消息 java的websocket并发的时候导致连接断…...

[Cloud Networking] Layer 2

文章目录 1. 什么是Mac Address?2. 如何查找MAC地址&#xff1f;3. 二层数据交换4. [Layer 2 Protocol](https://blog.csdn.net/settingsun1225/article/details/139552315) 1. 什么是Mac Address? MAC 地址是计算机的唯一48位硬件编码&#xff0c;嵌入到网卡中。 MAC地址也…...

[240609] qwen2 发布,在 Ollama 已可用 | 采用语言模型构建通用 AGI(2020年8月)

目录 qwen2 发布&#xff0c;在 Ollama 已可用Qwen2 模型概览 (基于 Ollama 网站信息)一、模型介绍二、模型参数三、支持语言 (除英语和中文外)四、模型性能五、许可证六、数据支撑: 采用语言模型构建通用 AGI qwen2 发布&#xff0c;在 Ollama 已可用 Qwen2 模型概览 (基于 O…...

赶紧收藏!2024 年最常见 20道分布式、微服务面试题(五)

上一篇地址&#xff1a;赶紧收藏&#xff01;2024 年最常见 20道分布式、微服务面试题&#xff08;四&#xff09;-CSDN博客 九、在分布式系统中&#xff0c;如何保证数据一致性&#xff1f; 在分布式系统中保证数据一致性是一个复杂的问题&#xff0c;因为分布式系统由多个独…...

为什么Kubernetes(K8S)弃用Docker:深度解析与未来展望

为什么Kubernetes弃用Docker&#xff1a;深度解析与未来展望 &#x1f680; 为什么Kubernetes弃用Docker&#xff1a;深度解析与未来展望摘要引言正文内容&#xff08;详细介绍&#xff09;什么是 Kubernetes&#xff1f;什么是 Docker&#xff1f;Kubernetes 和 Docker 的关系…...

软件游戏提示msvcp120.dll丢失的解决方法,总结多种靠谱的解决方法

在电脑使用过程中&#xff0c;我们可能会遇到一些错误提示&#xff0c;其中之一就是“找不到msvcp120.dll”。那么&#xff0c;msvcp120.dll是什么&#xff1f;它对电脑有什么影响&#xff1f;有哪些解决方法&#xff1f;本文将从以下几个方面进行探讨。 一&#xff0c;了解msv…...

使用kafka tools工具连接带有用户名密码的kafka

使用kafka tools工具连接带有用户名密码的kafka 创建kafka连接&#xff0c;配置zookeeper 在Security选择Type类型为SASL Plaintext 在Advanced页面添加如下图红框框住的内容 在JAAS_Config加上如下配置 需要加的配置&#xff1a; org.apache.kafka.common.security.plain.Pla…...

[个人感悟] Java基础问题应该考察哪些问题?

前言 “一切代码无非是数据结构和算法流程的结合体.” 忘了最初是在何处看见这句话了, 这句话, 对于Java基础的考察也是一样. 正如这句话所说, 我们对于基础的考察主要考察, 数据结构, 集合类型结构, 异常类型, 已经代码的调用和语法关键字. 其中数据结构和集合类型结构是重点…...

MySQL-主从复制

1、主从复制的理解 在工作用常见Redis作为缓存与MySQL一起使用。当有请求时&#xff0c;首先会从缓存中进行查找&#xff0c;如果存在就直接取出&#xff0c;否则访问数据库&#xff0c;这样 提升了读取的效率&#xff0c;也减少了对后台数据库的访问压力。Redis的缓存架构时高…...

开发没有尽头,尽力既是完美

最近遇到了一些难题&#xff0c;开发系统总有一些地方没有考虑周全&#xff0c;偏偏用户使用的时候“完美复现”了这个隐藏的Bug...... 讲道理创业一年之久为了生存&#xff0c;我一直都有在做复盘&#xff0c;复盘的核心就是&#xff1a;如何提升营收、把控开发质量&#xff0…...

【手推公式】如何求SDE的解(附录B)

【手推公式】如何求SDE的解&#xff08;附录B&#xff09; 核心思路&#xff1a;不直接求VE和VP的SDE的解xt&#xff0c;而是求xt的期望和方差&#xff0c;从而写出x0到xt的条件分布形式&#xff08;附录B&#xff09; 论文&#xff1a;Score-Based Generative Modeling throug…...

STM32F103单片机工程移植到航顺单片机HK32F103注意事项

一、简介 作为国内MCU厂商中前三阵营之一的航顺芯片&#xff0c;建立了世界首创超低功耗7nA物联网、万物互联核心处理器浩瀚天际10X系列平台&#xff0c;接受代理商/设计企业/方案商定制低于自主研发十倍以上成本&#xff0c;接近零风险自主品牌产品&#xff0c;芯片设计完成只…...

Llama模型家族之Stanford NLP ReFT源代码探索 (四)Pyvene论文学习

LlaMA 3 系列博客 基于 LlaMA 3 LangGraph 在windows本地部署大模型 &#xff08;一&#xff09; 基于 LlaMA 3 LangGraph 在windows本地部署大模型 &#xff08;二&#xff09; 基于 LlaMA 3 LangGraph 在windows本地部署大模型 &#xff08;三&#xff09; 基于 LlaMA…...

rapidjson 打包过程插入对象

开发过程中遇到一种情况&#xff0c;在打包过程中插入一个字符串&#xff08;里面是json对象&#xff09;&#xff0c; 官方文档 没看到相关例子&#xff0c;不知道是不是自己粗心没找到。方法RawValue其实是一个通用打包方法&#xff0c;一般情况我们都调用的是String()、Int(…...

RestClient

什么是RestClient RestClient 是 Elasticsearch 官方提供的 Java 低级 REST 客户端&#xff0c;它允许HTTP与Elasticsearch 集群通信&#xff0c;而无需处理 JSON 序列化/反序列化等底层细节。它是 Elasticsearch Java API 客户端的基础。 RestClient 主要特点 轻量级&#xff…...

逻辑回归:给不确定性划界的分类大师

想象你是一名医生。面对患者的检查报告&#xff08;肿瘤大小、血液指标&#xff09;&#xff0c;你需要做出一个**决定性判断**&#xff1a;恶性还是良性&#xff1f;这种“非黑即白”的抉择&#xff0c;正是**逻辑回归&#xff08;Logistic Regression&#xff09;** 的战场&a…...

【力扣数据库知识手册笔记】索引

索引 索引的优缺点 优点1. 通过创建唯一性索引&#xff0c;可以保证数据库表中每一行数据的唯一性。2. 可以加快数据的检索速度&#xff08;创建索引的主要原因&#xff09;。3. 可以加速表和表之间的连接&#xff0c;实现数据的参考完整性。4. 可以在查询过程中&#xff0c;…...

安宝特方案丨XRSOP人员作业标准化管理平台:AR智慧点检验收套件

在选煤厂、化工厂、钢铁厂等过程生产型企业&#xff0c;其生产设备的运行效率和非计划停机对工业制造效益有较大影响。 随着企业自动化和智能化建设的推进&#xff0c;需提前预防假检、错检、漏检&#xff0c;推动智慧生产运维系统数据的流动和现场赋能应用。同时&#xff0c;…...

新能源汽车智慧充电桩管理方案:新能源充电桩散热问题及消防安全监管方案

随着新能源汽车的快速普及&#xff0c;充电桩作为核心配套设施&#xff0c;其安全性与可靠性备受关注。然而&#xff0c;在高温、高负荷运行环境下&#xff0c;充电桩的散热问题与消防安全隐患日益凸显&#xff0c;成为制约行业发展的关键瓶颈。 如何通过智慧化管理手段优化散…...

解决本地部署 SmolVLM2 大语言模型运行 flash-attn 报错

出现的问题 安装 flash-attn 会一直卡在 build 那一步或者运行报错 解决办法 是因为你安装的 flash-attn 版本没有对应上&#xff0c;所以报错&#xff0c;到 https://github.com/Dao-AILab/flash-attention/releases 下载对应版本&#xff0c;cu、torch、cp 的版本一定要对…...

Ascend NPU上适配Step-Audio模型

1 概述 1.1 简述 Step-Audio 是业界首个集语音理解与生成控制一体化的产品级开源实时语音对话系统&#xff0c;支持多语言对话&#xff08;如 中文&#xff0c;英文&#xff0c;日语&#xff09;&#xff0c;语音情感&#xff08;如 开心&#xff0c;悲伤&#xff09;&#x…...

Android15默认授权浮窗权限

我们经常有那种需求&#xff0c;客户需要定制的apk集成在ROM中&#xff0c;并且默认授予其【显示在其他应用的上层】权限&#xff0c;也就是我们常说的浮窗权限&#xff0c;那么我们就可以通过以下方法在wms、ams等系统服务的systemReady()方法中调用即可实现预置应用默认授权浮…...

HDFS分布式存储 zookeeper

hadoop介绍 狭义上hadoop是指apache的一款开源软件 用java语言实现开源框架&#xff0c;允许使用简单的变成模型跨计算机对大型集群进行分布式处理&#xff08;1.海量的数据存储 2.海量数据的计算&#xff09;Hadoop核心组件 hdfs&#xff08;分布式文件存储系统&#xff09;&a…...

【Go语言基础【12】】指针:声明、取地址、解引用

文章目录 零、概述&#xff1a;指针 vs. 引用&#xff08;类比其他语言&#xff09;一、指针基础概念二、指针声明与初始化三、指针操作符1. &&#xff1a;取地址&#xff08;拿到内存地址&#xff09;2. *&#xff1a;解引用&#xff08;拿到值&#xff09; 四、空指针&am…...