SQL159 每个创作者每月的涨粉率及截止当前的总粉丝量
描述
用户-视频互动表tb_user_video_log
id | uid | video_id | start_time | end_time | if_follow | if_like | if_retweet | comment_id |
---|---|---|---|---|---|---|---|---|
1 | 101 | 2001 | 2021-09-01 10:00:00 | 2021-09-01 10:00:20 | 0 | 1 | 1 | NULL |
2 | 105 | 2002 | 2021-09-10 11:00:00 | 2021-09-10 11:00:30 | 1 | 0 | 1 | NULL |
3 | 101 | 2001 | 2021-10-01 10:00:00 | 2021-10-01 10:00:20 | 1 | 1 | 1 | NULL |
4 | 102 | 2001 | 2021-10-01 10:00:00 | 2021-10-01 10:00:15 | 0 | 0 | 1 | NULL |
5 | 103 | 2001 | 2021-10-01 11:00:50 | 2021-10-01 11:01:15 | 1 | 1 | 0 | 1732526 |
6 | 106 | 2002 | 2021-10-01 10:59:05 | 2021-10-01 11:00:05 | 2 | 0 | 0 | NULL |
(uid-用户ID, video_id-视频ID, start_time-开始观看时间, end_time-结束观看时间, if_follow-是否关注, if_like-是否点赞, if_retweet-是否转发, comment_id-评论ID)
短视频信息表tb_video_info
id | video_id | author | tag | duration | release_time |
---|---|---|---|---|---|
1 | 2001 | 901 | 影视 | 30 | 2021-01-01 07:00:00 |
2 | 2002 | 901 | 美食 | 60 | 2021-01-01 07:00:00 |
3 | 2003 | 902 | 旅游 | 90 | 2020-01-01 07:00:00 |
4 | 2004 | 902 | 美女 | 90 | 2020-01-01 08:00:00 |
(video_id-视频ID, author-创作者ID, tag-类别标签, duration-视频时长, release_time-发布时间)
问题:计算2021年里每个创作者每月的涨粉率及截止当月的总粉丝量
注:
- 涨粉率=(加粉量 - 掉粉量) / 播放量。结果按创作者ID、总粉丝量升序排序。
- if_follow-是否关注为1表示用户观看视频中关注了视频创作者,为0表示此次互动前后关注状态未发生变化,为2表示本次观看过程中取消了关注。
输出示例:
示例数据的输出结果如下
author | month | fans_growth_rate | total_fans |
---|---|---|---|
901 | 2021-09 | 0.500 | 1 |
901 | 2021-10 | 0.250 | 2 |
解释:
示例数据中表tb_user_video_log里只有视频2001和2002的播放记录,都来自创作者901,播放时间在2021年9月和10月;其中9月里加粉量为1,掉粉量为0,播放量为2,因此涨粉率为0.500(保留3位小数);其中10月里加粉量为2,掉份量为1,播放量为4,因此涨粉率为0.250,截止当前总粉丝数为2。
示例1
输入:
DROP TABLE IF EXISTS tb_user_video_log, tb_video_info;
CREATE TABLE tb_user_video_log (id INT PRIMARY KEY AUTO_INCREMENT COMMENT '自增ID',uid INT NOT NULL COMMENT '用户ID',video_id INT NOT NULL COMMENT '视频ID',start_time datetime COMMENT '开始观看时间',end_time datetime COMMENT '结束观看时间',if_follow TINYINT COMMENT '是否关注',if_like TINYINT COMMENT '是否点赞',if_retweet TINYINT COMMENT '是否转发',comment_id INT COMMENT '评论ID'
) CHARACTER SET utf8 COLLATE utf8_bin;CREATE TABLE tb_video_info (id INT PRIMARY KEY AUTO_INCREMENT COMMENT '自增ID',video_id INT UNIQUE NOT NULL COMMENT '视频ID',author INT NOT NULL COMMENT '创作者ID',tag VARCHAR(16) NOT NULL COMMENT '类别标签',duration INT NOT NULL COMMENT '视频时长(秒数)',release_time datetime NOT NULL COMMENT '发布时间'
)CHARACTER SET utf8 COLLATE utf8_bin;INSERT INTO tb_user_video_log(uid, video_id, start_time, end_time, if_follow, if_like, if_retweet, comment_id) VALUES(101, 2001, '2021-09-01 10:00:00', '2021-09-01 10:00:20', 0, 1, 1, null),(105, 2002, '2021-09-10 11:00:00', '2021-09-10 11:00:30', 1, 0, 1, null),(101, 2001, '2021-10-01 10:00:00', '2021-10-01 10:00:20', 1, 1, 1, null),(102, 2001, '2021-10-01 10:00:00', '2021-10-01 10:00:15', 0, 0, 1, null),(103, 2001, '2021-10-01 11:00:50', '2021-10-01 11:01:15', 1, 1, 0, 1732526),(106, 2002, '2021-10-01 10:59:05', '2021-10-01 11:00:05', 2, 0, 0, null);INSERT INTO tb_video_info(video_id, author, tag, duration, release_time) VALUES(2001, 901, '影视', 30, '2021-01-01 7:00:00'),(2002, 901, '影视', 60, '2021-01-01 7:00:00'),(2003, 902, '旅游', 90, '2020-01-01 7:00:00'),(2004, 902, '美女', 90, '2020-01-01 8:00:00');
输出:
901|2021-09|0.500|1
901|2021-10|0.250|2
解答
下面是解题过程的详细题解,以及对应的SQL代码和注释:
- 确定数据源:首先,我们需要知道数据存储在哪些表中,以及表中的列名。根据题目,我们有两个表:
tb_user_video_log
和tb_video_info
。 - 筛选数据:我们需要筛选出2021年的数据。这可以通过比较
end_time
字段的年份部分来实现。 - 计算涨粉率:涨粉率是新增粉丝数与流失粉丝数的差额除以当月的总粉丝数。我们使用
COUNT(distinct if(if_follow = 1,uid,null))
来计算新增粉丝数,使用COUNT(distinct if(if_follow = 2,uid,null))
来计算流失粉丝数。 - 计算总粉丝量:总粉丝量是每个月新增的粉丝数减去流失的粉丝数的累计和。我们使用
SUM(IF(if_follow = 2, -1, if_follow))
来计算每个月的净增粉丝数,并使用窗口函数OVER
来计算累计和。 - 分组和排序:最后,我们需要按照创作者和月份分组,并按照创作者和总粉丝量排序。
SELECT author, -- 选择创作者字段substr(end_time,1,7) AS month -- 将end_time字段截取到年和月,作为月份字段,round((COUNT(distinct if(if_follow = 1,uid,null)) -- 计算新增粉丝数量-COUNT(distinct if(if_follow = 2,uid,null ))) / COUNT(distinct a.id),3) AS fans_growth_rate -- 计算涨粉率,取三位小数,sum(SUM(IF(if_follow = 2, -1, if_follow))) over(PARTITION BY author order by substr(end_time,1,7)) as total_fans -- 使用窗口函数计算截止当月的总粉丝量
FROM tb_user_video_log a -- 从用户视频日志表中选择数据
LEFT JOIN tb_video_info b -- 与视频信息表进行左连接
ON a.video_id = b.video_id -- 通过video_id关联两个表
where substr(end_time,1,4) >='2021' -- 筛选出2021年的数据
GROUP BY author, -- 按创作者分组substr(end_time,1,7) -- 按月份分组
order by author asc , -- 按照创作者名称进行升序排序total_fans asc; -- 按照总粉丝量进行升序排序
相关文章:
SQL159 每个创作者每月的涨粉率及截止当前的总粉丝量
描述 用户-视频互动表tb_user_video_log iduidvideo_idstart_timeend_timeif_followif_likeif_retweetcomment_id110120012021-09-01 10:00:002021-09-01 10:00:20011NULL210520022021-09-10 11:00:002021-09-10 11:00:30101NULL310120012021-10-01 10:00:002021-10-01 10:00…...
Linux安装MySQL教程【带图文命令巨详细】
巨详细Linux安装MySQL 1、查看是否有自带数据库或残留数据库信息1.1检查残留mysql1.2检查并删除残留mysql依赖1.3检查是否自带mariadb库 2、下载所需MySQL版本,上传至系统指定位置2.1创建目录2.2下载MySQL压缩包 3、安装MySQL3.1创建目录3.2解压mysql压缩包3.3安装解…...
外部排序快速入门详解:基本原理,败者树,置换-选择排序,最佳归并树
文章目录 外部排序1.最基本的外部排序原理2.外部排序的优化2.1 败者树优化方法2.2 置换-选择排序优化方法2.3 最佳归并树 外部排序 为什么要学习外部排序? 答: 在处理数据的过程中,我们需要把磁盘(外存)中存储的数据拿到内存中处理…...
人工智能和物联网如何结合
欢迎来到 Papicatch的博客 目录 🍉引言 🍉AI与IoT的结合方式 🍈数据处理和分析 🍍实例 🍈边缘计算 🍍实例 🍈自动化和自主操作 🍍实例 🍈安全和隐私保护 &…...
【JAVASE】JAVA应用案例(下)
一:抢红包 一个大V直播时,发起了抢红包活动,分别有9,666,188,520,99999五个红包。请模拟粉丝来抽奖,按照先来先得,随机抽取,抽完即止,注意:一个红包只能被抽一次,先抽或…...
【面试干货】 B 树与 B+ 树的区别
【面试干货】 B 树与 B 树的区别 1、B 树2、 B 树3、 区别与优缺点比较4、 总结 💖The Begin💖点点关注,收藏不迷路💖 在数据库系统中,B 树和 B 树是常见的索引结构,它们在存储和组织数据方面有着不同的设计…...
Socket编程权威指南(四)彻底解密 Epoll 原理
在上一篇文章中,我们优化了基于 Socket 的网络服务器,从最初的 select/poll 模型进化到了高效的 epoll。很多读者对 epoll 的惊人性能表示极大的兴趣,对它的工作原理也充满了好奇。今天,就让我们一起揭开 epoll 神秘的面纱&#x…...
Windows开始ssh服务+密钥登录+默认启用powershell
文章内所有的命令都在power shell内执行,使用右键单击Windows徽标,选择终端管理员即可打开 Windows下OpenSSH的安装 打开Windows power shell,检查SSH服务的安装状态。会返回SSH客户端和服务器的安装状态,一下是两个都安装成功的…...
实体商铺私域流量打造策略:从引流到转化的全链路解析
在数字化时代,实体商铺面临着前所未有的挑战与机遇。随着线上购物的兴起,传统商铺如何吸引并留住顾客,成为了每个实体店家必须面对的问题。私域流量的打造,正是解决这一问题的关键所在。本文将从引流、留存、转化三个方面…...
实战 | 通过微调SegFormer改进车道检测效果(数据集 + 源码)
背景介绍 SegFormer:实例分割在自动驾驶汽车技术的快速发展中发挥了关键作用。对于任何在道路上行驶的车辆来说,车道检测都是必不可少的。车道是道路上的标记,有助于区分道路上可行驶区域和不可行驶区域。车道检测算法有很多种,每…...
翻译《The Old New Thing》- Why do messages posted by PostThreadMessage disappear?
Why do messages posted by PostThreadMessage disappear? - The Old New Thing (microsoft.com)https://devblogs.microsoft.com/oldnewthing/20090930-00/?p16553 Raymond Chen 2008年09月30日 为什么 PostThreadMessage 发布的信息会消失? 在显示用户界面的线…...
【深度学习】—— 神经网络介绍
神经网络介绍 本系列主要是吴恩达深度学习系列视频的笔记,传送门:https://www.coursera.org/deeplearning-ai 目录 神经网络介绍神经网络的应用深度学习兴起的原因 神经网络,全称人工神经网络(Artificial Neural Network…...
python-数字黑洞
[题目描述] 给定一个三位数,要求各位不能相同。例如,352是符合要求的,112是不符合要求的。将这个三位数的三个数字重新排列,得到的最大的数,减去得到的最小的数,形成一个新的三位数。对这个新的三位数可以重…...
SpringCloud 负载均衡 spring-cloud-starter-loadbalancer
简述 spring-cloud-starter-loadbalancer 是 Spring Cloud 中的一个组件,它提供了客户端负载均衡的功能。在 Spring Cloud 的早期版本中,Netflix Ribbon 被广泛用作客户端负载均衡器,但随着时间推移和 Netflix Ribbon 进入维护模式ÿ…...
牛客周赛-46
牛客周赛-46 a乐奈吃冰b素世喝茶c爱音开灯d小灯做题 a乐奈吃冰 ac code #include<iostream> using namespace std; int main(){long long a,b;cin>>a>>b;int tmpmin(b,a/2);long long resatmp;cout<<res;return 0; }b素世喝茶 #include<iostream…...
多模态vlm综述:An Introduction to Vision-Language Modeling 论文解读
目录 1、基于对比学习的VLMs 1.1 CLIP 2、基于mask的VLMs 2.1 FLAVA 2.2 MaskVLM 2.3 关于VLM目标的信息理论视角 3、基于生成的VLM 3.1 学习文本生成器的例子: 3.2 多模态生成模型的示例: 3.3 使用生成的文本到图像模型进行下游视觉语言任务 4、 基于预训练主干网…...
28.找零
上海市计算机学会竞赛平台 | YACSYACS 是由上海市计算机学会于2019年发起的活动,旨在激发青少年对学习人工智能与算法设计的热情与兴趣,提升青少年科学素养,引导青少年投身创新发现和科研实践活动。https://www.iai.sh.cn/problem/744 题目描述 有一台自动售票机,每张票卖 …...
[方法] 《鸣潮》/《原神》呼出与锁定光标的功能细节
本方法适用于Cinemachine - FreeLook。 1. 锁定与呼出光标的功能实现 // 锁定光标 private void LockMouse() {// 将光标锁定在屏幕中间Cursor.lockState CursorLockMode.Locked;// 隐藏光标Cursor.visible false; }// 呼出光标 private void UnLockMouse() {// 释放光标Cu…...
计算机网络-NAT配置与ACL
目录 一、ACL 1、ACL概述 2、ACL的作用 3、ACL的分类 4、ACL的配置格式 二、NAT 1、NAT概述 2、NAT分类 2.1 、 静态NAT 2.2 、 动态NAT 3、NAT的功能 4、NAT的工作原理 三、NAT配置 1、静态NAT配置 2、动态NAT配置 四、总结 一、ACL 1、ACL概述 ACLÿ…...
哈尔滨三级等保测评需要测哪些设备?
哈尔滨三级等保测评需要测的设备,主要包括物理安全设备、网络安全设备和应用安全设备三大类别。这些设备在保障哈尔滨地区信息系统安全方面发挥着至关重要的作用。 首先,物理安全设备是确保信息系统实体安全的基础。在哈尔滨三级等保测评中,物…...
大学体育(二)(华中科技大学) 中国大学MOOC答案2024版100分完整版
大学体育(二)(华中科技大学) 中国大学MOOC答案2024版100分完整版 有氧运动 有氧运动单元测验 1、 世界卫生组织对18-64岁年龄组成年人的运动建议是:每周至少( )分钟的中等强度有氧身体活动,或者每周至少&a…...
Web前端策划:从理念到实现的全方位解析
Web前端策划:从理念到实现的全方位解析 在数字化时代的浪潮中,Web前端策划作为连接技术与用户界面的桥梁,扮演着至关重要的角色。它涉及从用户需求分析、设计构思到技术实现的全方位过程,要求策划者具备深厚的技术功底和敏锐的市…...
经济与安全兼顾:茶饮店购买可燃气体报警器的价格考量
可燃气体报警器在如今的社会中扮演着至关重要的角色。它们用于检测环境中的可燃气体浓度,及早发现潜在的火灾隐患,保护人们的生命和财产安全。 在这篇文章中,佰德将介绍可燃气体报警器的安装、检定以及价格,通过实际案例和数据&a…...
鞠小云张霖浩闪耀北京广播电视台春晚发布会,豪门姐弟感爆棚
昨日,2025年北京广播电视台“追梦春晚”全国海选发布会在杭州举行,中国内地青年女演员鞠小云同人气幕后张霖浩,受主办方盛情邀请出席本次活动。从现场流露出的照片中可以看出,鞠小云一袭白色长裙灵动温婉素雅,而张霖浩…...
java Function 用法
**Function 接口是 Java 8 引入的一个核心函数式接口,用于表示一个接受单一输入参数并产生结果的函数**。Function 接口主要用在数据处理和转换操作中,如集合处理、流处理等场景。下面将深入探讨 Function 接口的用法: 1. **基本概念**&…...
LabVIEW与Python的比较及联合开发
LabVIEW和Python在工业自动化和数据处理领域各具优势,联合开发可以充分发挥两者的优点。本文将从语言特性、开发效率、应用场景等多个角度进行比较,并详细介绍如何实现LabVIEW与Python的联合开发。 语言特性 LabVIEW 图形化编程:LabVIEW使用…...
RAG技术在教育领域的应用
一、引言 点击可以查看最新资源 随着人工智能技术的飞速发展,教育领域正迎来一场深刻的变革。大型语言模型(LLM)和检索增强生成(Retrieval-Augmented Generation,RAG)技术的结合,为教育领域注入…...
玉米粒计数检测数据集VOC+YOLO格式107张1类别
数据集格式:Pascal VOC格式YOLO格式(不包含分割路径的txt文件,仅仅包含jpg图片以及对应的VOC格式xml文件和yolo格式txt文件) 图片数量(jpg文件个数):107 标注数量(xml文件个数):107 标注数量(txt文件个数):107 标注类别…...
成功解决IndexError: index 0 is out of bounds for axis 1 with size 0.
成功解决IndexError: index 0 is out of bounds for axis 1 with size 0. 🌈 欢迎莅临我的个人主页👈这里是我深耕Python编程、机器学习和自然语言处理(NLP)领域,并乐于分享知识与经验的小天地!Ἰ…...
stm32之USMART调试组件的使用
一、什么是USMART? USMART是正点原子团队为其STM32开发平台开发的一种类似linux的shell的调试工具。具体工作过程是通过串口发送命令给单片机,然后单片机收到命令之后调用单片机里面对应的相关函数,并执行,同时支持返回结果。 二、USMART调…...
成都网站平台建设/网络广告案例以及分析
1:标识符:在程序里给类,对象,方法,属性等起的名字 标识符由大小写字母,下划线,数字,$符号组成 开头可以是大小写字母,下划线和$符号,数字不能开头 标识符长度没有限制 不…...
哪做网站/百度推广登录平台官网
程序分目录管理 szz_aip:工程目录bin:可执行文件 start.pyconfig:配置文件 setting.pylib:工具类、初始化服务类、接口类 interface.py 接口 tools.py 工具logs:日志readme.txt:说明 setting.p…...
网站导航栏三级菜单代码/网站怎么推广效果好一点呢
基本类型与引用类型 在 ECMAScript 规范中,共定义了 7 种数据类型,分为 基本类型 和 引用类型 两大类,如下所示: 基本类型:String、Number、Boolean、Symbol、Undefined、Null 引用类型:Object 基本类型也…...
哪些网站需要备案/怎么在百度发广告
采购单位:天津市房地产经济技术信息中心拟采购的内容:序号 型号 描述 数量 1 Oracle应用服务器套件软件 WebLogic Suite Processor 2cpu 2 Oracle数据同步检测软件 Oracle GoldenGate Veridata Processor 2cpu 3 Oracle数据同步核心软件 O…...
网站转微信小程序/emlog友情链接代码
单元测试(模块测试)是开发者编写的一小段代码,用于检验被测代码的一个很小的、很明确的功能是否正确。通常而言,一个单元测试是用于判断某个特定条件(或者场景)下某个特定函数的行为。例如,你可…...
天猫店铺转让平台/网站关键词优化多少钱
简介 本文主要探索在转码前探测流格式和流信息完成后,怎样将处理过的数据进行转码,而不至于丢失。 这个问题实际上就是要探索ffmpeg中的读取数据和缓冲数据系统是如何运作的。了解了这些可以帮助 我们在转码过程中方便的处理数据。 各函数探索 从内…...