二叉树从入门到AC(3)完全二叉树与堆
完全二叉树与堆
- 前言
- 优先队列:堆
- 向下调整维护堆
- 向上调整维护堆
- 堆的作用
前言
本文算是补充之前的系列,在前文中,讲了二叉树的基本结构与应用
二叉树从入门到AC(1)构建和前中后序遍历
二叉树从入门到AC(2)深度与层次遍历
二叉树的特殊形态
二叉树有两种常用的特殊形态:满二叉树和完全二叉树。如果一颗二叉树,其内部每个结点都有左右儿子,我们称之为满二叉树,这很好理解,如图所示:

我们在满二叉树中的最后一层,从右往左连续拔去至少零个结点,便是完全二叉树。也就是说,满二叉树是一种特殊的完全二叉树。

以上都为完全二叉树
那么如何判断一棵树是不是完全二叉树呢?我们可以运用层次遍历的结构(前文有代码),首先将储存一颗非空树,在队列中遵循:
1.如果遇到一个结点,左孩子为空,右孩子不为空,则该树一定不是完全二叉树
2.如果遇到一个结点,左孩子不为空,右孩子为空;或者左右孩子都为空,且则该节点之后的队列中的结点都为叶子节点,该树才是完全二叉树
3.以上两个一直都没触发,说明是满二叉树
优先队列:堆
堆,是一种特殊的完全二叉树,每个结点储存一个值,其中,若所有父结点都小于其子结点,称为最小堆,反之则是最大堆。如图:

二叉堆是一种基础数据结构,C++ 的STL中的优先队列就是使用二叉堆。另外,堆排序也是一种二叉堆算法。
堆的作用主要面向一个问题:如何高效的在一组数据中任意插入删除任何值的情况下,始终找到最小值/最大值。
这种数据结构也被称为优先队列。
向下调整维护堆
以上图的最小堆为例,在数组中按层次遍历储存为3,5,7,9,8,11
要求:不限次数的删除最小值并插入进新的值,保持堆的属性(最小值在堆顶)
这时候我们删除堆顶的最小值3,并且添加任意一个数如10到堆顶,只要能维护这个堆的属性,我们就可以得到新的最小值。
于是设计算法,我们从堆顶开始反复执行:把当前结点与左右儿子比对,并与最小的那个结点交换值,直到无法交换(要么是左右儿子都更大,要么是到叶子结点了)
如图所示:

于是我们维护住了一个最小堆,最大堆也是同理。那么在代码层就好写多了,我们可以根据数组下标发现,设当前结点下标为i,我们只需要每次与2i和2i+1相比并判断是否Swap就好

void Sswap(int a,int b)
{int c=0;c=arr[b];arr[b]=arr[a];arr[a]=c;
}
void siftdown(int i)//向下调整,用于寻找最值
{int t=0,flag=0;while(i*2<=n&&flag==0){if(arr[i]>arr[i*2])t=i*2;elset=i;if(t*2+1<=n){if(arr[t]>arr[i*2+1])t=i*2+1;}if(t!=i){Sswap(t,i);//交换两结点的值i=t;}elseflag=1;}
}
在主函数中,我们将数组调整为全局变量,并且i始终设为0,例如
int arr[6]={10,5,7,9,8,11};
int n=5;
int main()
{siftdown(0);for(int i=0;i<=n;i++){printf("%d ",arr[i]);}return 0;
}
执行结果:

向上调整维护堆
如果我们需要不断向堆中添加数值而不删除数值怎么办?那么我们可以从下面的叶子结点开始添加,并逐一往上比对,来维护堆。
void siftup(int i)
{int flag=0;if(i==0)return;while(i!=0&&flag==0){if(arr[i]<arr[i/2])Sswap(i,i/2);elseflag=1;i=i/2;}
}
我们将:arr[6]={3,5,7,9,8,1};
与i=5代入,

这便是堆的维护操作。
堆的作用
当我们输入一个数组,并求其最值时,我们一般会开max或min比对每个数并保留最值,这是时间复杂度最低的做法,为O(N)。但是当我们删除最小值并添加进一个新值之后,就相当于需要彻底进行一次重新排序,复杂度也来到了O(N^2),而同样的目的,由于堆的特性,维护起来只需要logN的时间。
那么我们如何用完全无序的数列建立一个堆呢?
void creat()
{int i=0;for(i=n/2;i>=0;i--){siftdown(i);}
}
即可。
在创建了堆之后,我们还有著名的排序方法,堆排序,网上到处都有模板在这里不赘述。另外,堆也是一种重要的优化思路出现在别的算法中,主旨都在于用更短的时间来在插入、删除元素的情况下捕捉最值(或者第n大的值也可以)。
相关文章:
二叉树从入门到AC(3)完全二叉树与堆
完全二叉树与堆 前言优先队列:堆向下调整维护堆向上调整维护堆堆的作用 前言 本文算是补充之前的系列,在前文中,讲了二叉树的基本结构与应用 二叉树从入门到AC(1)构建和前中后序遍历 二叉树从入门到AC(2&a…...
AI写作:如何让创作过程更流畅?
写作这件事一直让我们从小学生头痛到打工人,初高中时期800字的作文让我们焦头烂额,一篇作文里用尽了口水话,拼拼凑凑才勉强完成。 大学时期以为可以轻松顺利毕业,结果毕业前的最后一道坎拦住我们的是毕业论文,苦战几个…...
2024中国海洋装备展暨航海装备大会(福州海峡国际会展中心)
关于邀请参加2024中国海洋装备博览会的函 为加快推动海洋强国建设。在福建省人民政府的大力支持下,第二届中国海洋装备博览会将于2024年11月15-18日在福州举办。 博览会将进一步聚焦产业链和供应链协同创新,着力推动现代海洋产业体系建设,促进海洋科技…...
CyberDAO:引领Web3时代的DAO社区文化
致力于Web3研究和孵化 CyberDAO自成立以来,致力于推动Web3研究和孵化,吸引了来自技术、资本、商业、应用与流量等领域的上千名热忱成员。我们为社区提供多元的Web3产品和商业机会,触达行业核心,助力成员捕获Web3.0时代的红利。 目…...
测试面试点
在面试PC端测试人员时,你可以提出以下具体问题来深入了解候选人的技能、经验和思维方式: 1. 技术能力与基础知识 你能解释一下什么是黑盒测试和白盒测试吗?你在过去的工作中是如何应用这两种测试方法的? 答案:黑盒测…...
Nginx配置详细解释:(4)高级配置
目录 1.网页的状态页 2.Nginx第三方模块(echo) 3.变量 4.自定义访问日志 5.Nginx压缩功能 6.https功能 7.自定义图标 Nginx除了一些基本配置外,还有一些高级配置,如网页的状态,第三方模块需要另外安装,支持变量,…...
OceanBase 4.3 特性解析:列存技术
在涉及大规模数据的复杂分析或即时查询时,列式存储是支撑业务负载的关键技术之一。相较于传统的行式存储,列式存储采用了不同的数据文件组织方式,它将表中的数据以列为单位进行物理排列。这种存储模式允许在分析过程中,查询计算仅…...
ARM32开发--PWM与通用定时器
知不足而奋进望远山而前行 目录 文章目录 前言 学习目标 学习内容 PWM pwm原理 需求 开发流程 初始化PWM PWM占空比控制 main函数修改duty 输出通道 关心的内容 重要的关键词 周期 分频 占空比 总结 前言 在微控制器开发中,理解和掌握PWM&#x…...
debugger(七):栈帧(backtrace)
〇、前言 在前面已经详细得介绍了栈帧,这里实现 backtrace。 一、backtrace 思路是遍历 stack,搜索 stack pointer,逐个打印栈帧信息,一直打印到 main 函数。 void Debugger::print_backtrace() {auto output_frame [frame_n…...
kafka-重试和死信主题(SpringBoot整合Kafka)
文章目录 1、重试和死信主题2、死信队列3、代码演示3.1、appication.yml3.2、引入spring-kafka依赖3.3、创建SpringBoot启动类3.4、创建生产者发送消息3.5、创建消费者消费消息 1、重试和死信主题 kafka默认支持重试和死信主题 重试主题:当消费者消费消息异常时&…...
electron-Vue: Module parse failed: Unexpected character ‘ ‘
electron-Vue项目中,我自己写了一个node的C扩展(xx.node),然后在.vue文件里import它,然后运行npm run electron:serve,报错如下: electron-Vue打包默认使用webpack,默认情况下webpack没…...
贪心算法-数组跳跃游戏(mid)
目录 一、问题描述 二、解题思路 1.回溯法 2.贪心算法 三、代码实现 1.回溯法实现 2.贪心算法实现 四、刷题链接 一、问题描述 二、解题思路 1.回溯法 使用递归的方式,找到所有可能的走步方式,并记录递归深度(也就是走步次数&#x…...
C++经典150题
经典150题 数组/字符串 文章目录 经典150题数组/字符串88. 合并两个有序数组27.移除元素26.删除有序数组中的重复项80.删除有序数组重点重复项II169.多数元素189.轮转数组121.买卖股票的最佳时机123.买卖股票的最佳时机 III55.跳跃游戏45.跳跃游戏II 88. 合并两个有序数组 给…...
超详解——Python 序列详解——基础篇
目录 1. 序列的概念 字符串(String) 列表(List) 元组(Tuple) 2. 标准类型操作符 连接操作符() 重复操作符(*) 索引操作符([]) …...
DVWA-DC-6
靶机IP:192.168.20.140 kaliIP:192.168.20.128 网络有问题的可以看下搭建Vulnhub靶机网络问题(获取不到IP) 信息收集 nmap扫描靶机端口及版本信息 dirsearch扫目录 发现是个wordpress建站 我们去访问前端界面 存在重定向,修改hosts文件,加入192.168…...
ubuntu早期版本以及18.04后的版本,通过rc.local配置开机自启
在ubuntu早期版本以及18.04后的版本,还是支持在rc.local中进行操作开机自启。 1、编辑rc.local文件 cat <<EOF >/etc/rc.local #!/bin/sh -e # rc.local # This script is executed at the end of each multiuser runlevel. # Make sure that the script…...
【环境搭建】1.阿里云ECS服务器 安装jdk8
在阿里云服务器上安装 JDK 8 可以通过以下步骤完成。假设你使用的是 CentOS 或者其他基于 Red Hat 的发行版或Alibaba Cloud Linux 3.2104 LTS 64位。 1.更新系统软件包 sudo yum update -y2.安装 OpenJDK 8 使用 yum 包管理器安装 OpenJDK 8 sudo yum install -y java-1.8…...
idea插件开发之定义侧边栏
写在前面 看下如何在侧边栏定义窗口,如下的效果: 1:正戏 先来定义UI,随便拖拽个组件,就看个效果: 接着定义一个工厂类来创建这个UI,需要实现接口com.intellij.openapi.wm.ToolWindowFactor…...
HarmonyOS未来五年的市场展望
一、引言 随着科技的不断进步和消费者对于智能化设备需求的日益增长,操作系统作为连接硬件与软件的核心平台,其重要性愈发凸显。HarmonyOS(鸿蒙系统),作为华为自主研发的分布式操作系统,自诞生以来便备受瞩…...
R语言:什么是向量化操作(Vectorization)?
在R语言中,向量化操作是一个非常重要且强大的概念。它不仅提高了代码的简洁性和可读性,还大大提升了代码的执行效率。本文将详细介绍什么是向量化操作,并通过几个示例来展示其应用。 什么是向量化操作? 向量化操作是指在不使用显…...
【人工智能】神经网络的优化器optimizer(二):Adagrad自适应学习率优化器
一.自适应梯度算法Adagrad概述 Adagrad(Adaptive Gradient Algorithm)是一种自适应学习率的优化算法,由Duchi等人在2011年提出。其核心思想是针对不同参数自动调整学习率,适合处理稀疏数据和不同参数梯度差异较大的场景。Adagrad通…...
模型参数、模型存储精度、参数与显存
模型参数量衡量单位 M:百万(Million) B:十亿(Billion) 1 B 1000 M 1B 1000M 1B1000M 参数存储精度 模型参数是固定的,但是一个参数所表示多少字节不一定,需要看这个参数以什么…...
如何在看板中体现优先级变化
在看板中有效体现优先级变化的关键措施包括:采用颜色或标签标识优先级、设置任务排序规则、使用独立的优先级列或泳道、结合自动化规则同步优先级变化、建立定期的优先级审查流程。其中,设置任务排序规则尤其重要,因为它让看板视觉上直观地体…...
04-初识css
一、css样式引入 1.1.内部样式 <div style"width: 100px;"></div>1.2.外部样式 1.2.1.外部样式1 <style>.aa {width: 100px;} </style> <div class"aa"></div>1.2.2.外部样式2 <!-- rel内表面引入的是style样…...
相机Camera日志分析之三十一:高通Camx HAL十种流程基础分析关键字汇总(后续持续更新中)
【关注我,后续持续新增专题博文,谢谢!!!】 上一篇我们讲了:有对最普通的场景进行各个日志注释讲解,但相机场景太多,日志差异也巨大。后面将展示各种场景下的日志。 通过notepad++打开场景下的日志,通过下列分类关键字搜索,即可清晰的分析不同场景的相机运行流程差异…...
华为云Flexus+DeepSeek征文|DeepSeek-V3/R1 商用服务开通全流程与本地部署搭建
华为云FlexusDeepSeek征文|DeepSeek-V3/R1 商用服务开通全流程与本地部署搭建 前言 如今大模型其性能出色,华为云 ModelArts Studio_MaaS大模型即服务平台华为云内置了大模型,能助力我们轻松驾驭 DeepSeek-V3/R1,本文中将分享如何…...
CVE-2020-17519源码分析与漏洞复现(Flink 任意文件读取)
漏洞概览 漏洞名称:Apache Flink REST API 任意文件读取漏洞CVE编号:CVE-2020-17519CVSS评分:7.5影响版本:Apache Flink 1.11.0、1.11.1、1.11.2修复版本:≥ 1.11.3 或 ≥ 1.12.0漏洞类型:路径遍历&#x…...
QT3D学习笔记——圆台、圆锥
类名作用Qt3DWindow3D渲染窗口容器QEntity场景中的实体(对象或容器)QCamera控制观察视角QPointLight点光源QConeMesh圆锥几何网格QTransform控制实体的位置/旋转/缩放QPhongMaterialPhong光照材质(定义颜色、反光等)QFirstPersonC…...
WPF八大法则:告别模态窗口卡顿
⚙️ 核心问题:阻塞式模态窗口的缺陷 原始代码中ShowDialog()会阻塞UI线程,导致后续逻辑无法执行: var result modalWindow.ShowDialog(); // 线程阻塞 ProcessResult(result); // 必须等待窗口关闭根本问题:…...
【Veristand】Veristand环境安装教程-Linux RT / Windows
首先声明,此教程是针对Simulink编译模型并导入Veristand中编写的,同时需要注意的是老用户编译可能用的是Veristand Model Framework,那个是历史版本,且NI不会再维护,新版本编译支持为VeriStand Model Generation Suppo…...
