微小目标识别研究(2)——基于K近邻的白酒杂质检测算法实现
文章目录
- 实现思路
- 配置opencv
- 位置剪裁
- 实现代码
- 自适应中值滤波
- 实现代码
- 动态范围增强
- 实现代码
- 形态学处理
- 实现代码
- 图片预处理效果
- 计算帧差
- 连续帧帧差法原理和实现代码
- 实现代码
- K近邻实现
- 基本介绍
- 实现代码
- 这部分是手动实现的,并没有直接调用相关的库
- 完整的代码——调用opencv的特定的库实现的
- 实现过程
- 参考
实现思路
- 使用C++进行实现,开发平台是clion,并没有使用深度学习,使用opencv进行开发
配置opencv
-
一开始就出来幺蛾子,之前装好的opencv怎么都找不到包,弄了一个小时,夹着红框后面的三句,告诉clion我安装的opencv包的具体位置,可能是因为我之前没有编译成功,直接间别人编译好的直接下载下来的,不过我为什么不用python上面的opencv那。
-
位置剪裁
- 相机位置固定,拍摄的位置固定,背景干扰很少,只需要保存红框右半部分的内容即可,左半部分去除。
实现代码
#include <opencv2/opencv.hpp>
#include <opencv2/highgui/highgui.hpp>
#include <opencv2/core/core.hpp>
#include <iostream>
#include <fstream>using namespace std;
using namespace cv;struct RectPoint{int x,y;int width,height;RectPoint(int x,int y,int width,int height):x(x),y(y),width(width),height(height){}
};void ClipImage(String ImagePath,RectPoint rect,String TargetPath){// 声明Mat保存图片Mat img;Rect m_select;string line;// 判定文件存在ifstream input_file(ImagePath);if (!input_file.is_open()) {cerr << "Could not open the file - '"<< ImagePath << "'" << endl;return;}while(getline(input_file,line)){// 获取文件后缀名,并进行拼接成目标文件名string ImageName = line.substr(line.find_last_of('\\',line.size())+1);string TargetName = TargetPath;TargetName.append(ImageName);// 读取并剪裁图片到特定大小保存img = imread(line);m_select = Rect(rect.x,rect.y,rect.width,rect.height);Mat ROI = img(m_select);imwrite(TargetName,ROI);}
}int main()
{String TargetImage = R"(E:\CProject\impurityDetection\ClippedImage\)";String SourceImage = R"(E:\CProject\impurityDetection\image\path.txt)";ClipImage(SourceImage,RectPoint(600,0,1780,1480),TargetImage);return 0;
}
自适应中值滤波
- 自适应中值滤波,是为了去除照相机的噪声同时,又不损坏原来的杂质信息,这里使用自适应中值滤波,具体实现如下。
实现代码
void Convolution(Mat &SourceImage,vector<int> &pixels,int x,int y ,int border){for (int k = -border; k <= border; k++){for (int l = -border; l <= border; l++){pixels.push_back(SourceImage.at<uchar>(x+k, y+l));}}
}Mat SelfAdaptMedianFilter(const Mat& SourceImage){// 复制原图Mat result = SourceImage.clone();// 掩膜大小为3int ksize = 3;int border = ksize /2 ;for (int i = border; i < SourceImage.rows - border; i++){for (int j = border; j < SourceImage.cols - border; j++){while(1){// 提取当前像素的邻域vector<int> pixels;Convolution(result, pixels, i, j, border);// 对邻域像素值进行排序sort(pixels.begin(), pixels.end());// 取中值作为当前像素的新值int median = pixels[pixels.size() / 2];int PMax = pixels[pixels.size() - 1];int PMin = pixels[0];//判定是否为异常值if (median == PMax || median == PMin) {// 掩膜再加2,重新计算ksize += 2;if (ksize + 2 > Nmax) {result.at<uchar>(i, j) = median;break;}else{// 判定传入的值,是否出现越界的情况if((i - ksize / 2 < 0 || i + ksize / 2 < SourceImage.cols) ||j - ksize / 2 < 0 || j + ksize / 2 > SourceImage.rows)result.at<uchar>(i,j) = (PMax + PMin) / 2;}} else {//中值不是极值,判定原像素点是不是极值,然后在进行输出if (result.at<uchar>(i, j) == PMax || result.at<uchar>(i, j) == PMin)result.at<uchar>(i,j) = median;break;}}}}return result;
}
动态范围增强
- 这里就是图像的直方图均衡化,使得整个模型的图片颜色对比度更大,显示出更多的细节。
实现代码
//对图片进行直方图均衡化,凸显出前后差异Mat equalized;// 转成二值化,并变为直方图均衡化cvtColor(ROI, equalized, COLOR_BGR2GRAY);equalizeHist(equalized, equalized);
形态学处理
- 膨胀操作 :通过增加图像中的物体的像素数量,使得物体的大小和面积增加,边缘变得更加明显,改变了原来字体粗细
- 腐蚀操作 :在卷积核大小中对图片进行卷积。取图像中(3 * 3)区域内的最小值。可以消除图像中的毛刺和噪声。改变了原来字体粗细
- 开运算 :先腐蚀运算,在进行膨胀运算。在不损害字体信息的情况下,去除了噪声和毛刺。通过调整卷积可以进一步减少噪声
- 闭运算 :先膨胀运算,在进行腐蚀运算。在不去除任何噪声的情况下,补全了缺失的信息。
- 这里选择开运算,具体实现代码如下,别的可以参考知乎链接
实现代码
// 对图像进行开运算,Mat morphologied;int size = 3;// shape是内核的形状,size是内核的尺寸,锚点的位置,对于矩形来说,全部都是 1 ,不用调整cv::Mat element = cv::getStructuringElement(cv::MORPH_RECT,cv::Size(2*size + 1, 2*size+1),cv::Point(size, size));cout<<element<<endl;morphologyEx(equalized, morphologied, cv::MORPH_OPEN, element);
图片预处理效果
计算帧差
- 主要有两种方法,分别是静态参考帧差分法和连续帧帧差法,下图为两个效果,很明显的可以就看到连续帧帧差法的效果更好,常见的静态帧是将多个帧进行平均,然后以平均之后的帧作为参考帧,然后后面每帧都是和当前帧作比较,没有动作的连续性。
连续帧帧差法原理和实现代码
-
实现原理如下图
-
使用absdiff函数,具体描述如下,计算frame1和frame2的帧差,然后将结果保存到framediff中
cv::Mat frameDiff;
cv::absdiff(frame1, frame2, frameDiff);
实现代码
//计算帧差,并将最终的结果进行返回
Mat DifFrame(Mat PreFrame,Mat CurFrame,Mat NextFrame){//计算帧差Mat FrameDiffPre , FrameDiffNext;absdiff(PreFrame,CurFrame,FrameDiffPre);absdiff(CurFrame,NextFrame,FrameDiffNext);// 分别进行二值化,设定二值化的阈值Mat BinImgPre , BinImgNext;threshold(FrameDiffPre,BinImgPre,128,255,cv::THRESH_BINARY);threshold(FrameDiffNext,BinImgPre,128,255,cv::THRESH_BINARY);// 将图片进行与运算,然后将结果进行输出Mat ResFrame;bitwise_and(FrameDiffPre,FrameDiffNext,ResFrame);//返回最终处理过后的帧return ResFrame;}// 计算帧差的外部函数,读取原来处理过的文件,计算所有图片的帧差
void AllDifFrame(const string& ImagePath,const string& TargetPath){// 保存文件名string line;// 判定文件存在ifstream input_file(ImagePath);if (!input_file.is_open()) {cerr << "Could not open the file - '"<< ImagePath << "'" << endl;return;}// 需要提前读取两个,然后依次往后进行迭代Mat PreFrame,CurFrame,NextFrame;getline(input_file,line);PreFrame = imread(line);// 读取下一个需要处理的帧getline(input_file,line);CurFrame = imread(line);// 逐行读取文件名while(getline(input_file,line)){// 当前需要处理的帧NextFrame = imread(line);// 获取文件后缀名,并进行拼接成目标文件名string ImageName = line.substr(line.find_last_of('\\',line.size())+1);string TargetName = TargetPath;TargetName.append(ImageName);// 三帧相邻出进行帧差运算,算出的帧差进行按位相与运算Mat TempFrame;absdiff(PreFrame,CurFrame,PreFrame);absdiff(CurFrame,NextFrame,TempFrame);bitwise_and(PreFrame,TempFrame,TempFrame);//计算计算过进行保存imwrite(TargetName,TempFrame);// 三帧往前进行迭代PreFrame = CurFrame;CurFrame = NextFrame;}}
K近邻实现
基本介绍
-
思路 : 将样本在特征空间中,根据一定的分类方法,归类于与该样本最相似的K个样本中大多数的那一类。需要一部分已经标注过的样本,然后将未标注过的样本进行分类。
-
特点 :
- 对于异常目标的容忍度比较高,因为不依靠参数直接分类,而是寻找多个近邻目标的联合分类
- 支持多分类,对于类域交叉重叠依然有较好的分类能力,因为白酒中的杂质在特征上有很强的相似性,在类域上会有很强的重叠性
- 训练过程复杂度低:实时更新样本数据集,再识别一种杂质之后,将该样本增加到样本数据中,使得分类效果更加稳定。
-
实现过程 :
- 准备数据集:需要将要分类的目标的特征向量与一些已知分类的目标的特征向量组成一个数据集。
- 特征提取:使用OpenCV库提取目标的特征向量。
- 注意 这里提取的特征是完整的一幅图片,因为我这里已经对图片进行了预处理,让特征很明显,所以不需要进行特征提取
- 训练模型:使用KNN算法对数据集进行训练,生成分类器。
- 分类:使用训练好的分类器对新的目标进行分类。
-
补充
- 针对图片进行的KNN分类,是一种高维数据,KNN算法可以使用降维技术,来提高效率和准确率,比如说主成分分析(PCA)
- KNN,适用于小数据集和低维度数据集
- 可以通过对距离加权的方式,来提升预测的准确率
实现代码
这部分是手动实现的,并没有直接调用相关的库
// 定义一个结构体,用于保存数据点和标签
struct DataPoint {vector<double> features; // 特征数据int label; // 标签
};// 计算欧氏距离
double euclideanDistance(const vector<double>& v1, const vector<double>& v2) {double dist = 0.0;for (int i = 0; i < v1.size(); i++) {dist += pow((v1[i] - v2[i]), 2);}return sqrt(dist);
}// 预测函数,返回预测标签
int predict(const vector<DataPoint>& trainData, const vector<double>& testData, const int k) {// 对于测试集,计算每一个测试样本和数据集中的,所有样本的欧式距离vector<pair<int, double>> distances; // 存储距离和标签for (const auto & i : trainData) {double distance = euclideanDistance(i.features, testData);distances.emplace_back(i.label, distance);}// 根据结果进行排序,指定排序函数,仅仅对距离进行比较sort(distances.begin(), distances.end(), [](pair<int, double> a, pair<int, double> b) {return a.second < b.second;});// 获取最后k个样本最高的分类类别vector<int> kLabels(k);for (int i = 0; i < k; i++) {kLabels.push_back(distances[i].first);}// 获取数量类别最大的分类int maxLabel = 0;int maxCount = 0;for (auto iter = kLabels.begin();iter != kLabels.end();iter ++){int times = count(kLabels.begin(),kLabels.end(),*(iter));if(times > maxCount){maxCount = times;maxLabel = *(iter);}}return maxLabel;}
完整的代码——调用opencv的特定的库实现的
#include<opencv2/opencv.hpp>
#include<iostream>
#include <fstream>using namespace std;
using namespace cv;
using namespace cv::ml;// 读取图片并形成数据集
void KNNTraning(const string& ImagePath, Mat& Images, Mat& Labels) {/** 将图片转成一维数据,并保存在MAT中* path: 读取文件需要使用的路径* images:保存所有图片的数据集* labels:对应每一张图片的标签*/// 声明Mat保存图片Mat img;string line;string ImgLabel;int flag = 0;// 判定文件存在ifstream input_file(ImagePath);if (!input_file.is_open()) {cerr << "Could not open the file - '"<< ImagePath << "'" << endl;return;}while(getline(input_file,line)) {// 获取文件后缀名,并进行拼接成目标文件名string ImageName = line.substr(line.find_last_of('\\',line.size())+1);if(ImageName != ImgLabel)flag ++;// 将图片转成一维的数据,并合并到一个大的mat中img = imread(line, cv::IMREAD_GRAYSCALE);Images.push_back(img.reshape(0,1));Labels.push_back(flag);}// 将Mat转变成数据集Images.convertTo(Images,CV_32F);Images = Images / 255;int nImgCount = Images.rows;int nTrainCount = nImgCount / 4 * 3;Mat trainData,trainLabels;trainData = Images(Range(0,nTrainCount),Range::all());trainLabels = Labels(Range(0,nTrainCount),Range::all());Ptr<TrainData> tData = TrainData::create(trainData, ROW_SAMPLE, trainLabels);// 训练KNN模型Ptr<KNearest> model = KNearest::create();// 设定k值,最终选取是哪个类别model->setDefaultK(5);// 设置分类还是回归,true为分类,false为回归model->setIsClassifier(true);// 设置训练数据,进行训练。就相当于将前面的标注数据和测试数据进行了一个训练绑定model->train(tData);model->save("model.xml");
}float predict(string ImgPath,string modelPath){// 加载模型cv::Ptr<cv::ml::KNearest> knn = cv::ml::StatModel::load<cv::ml::KNearest>(modelPath);//读取图片Mat imgTest = imread(ImgPath);imgTest.convertTo(imgTest,CV_32F);imgTest = imgTest / 255;imgTest = imgTest.reshape(0,1);//输出预测结果float ret = knn->predict(imgTest);return ret;
}
实现过程
参考
- Opencv 图像处理之膨胀与腐蚀 【https://zhuanlan.zhihu.com/p/110330329】
相关文章:

微小目标识别研究(2)——基于K近邻的白酒杂质检测算法实现
文章目录实现思路配置opencv位置剪裁实现代码自适应中值滤波实现代码动态范围增强实现代码形态学处理实现代码图片预处理效果计算帧差连续帧帧差法原理和实现代码实现代码K近邻实现基本介绍实现代码这部分是手动实现的,并没有直接调用相关的库完整的代码——调用ope…...

2022-06-14至2022-08-11 关于复现MKP算法的总结与反思
Prerequisite 自2022年6月14日至2022年8月11日的时间内,我致力于完成A Hybrid Approach for the 0–1 Multidimensional Knapsack problem 论文的复现工作,此次是我第一次进行组合优化方向的学习工作,下面介绍该工作内容发展过程以及该工作结…...

IBMMQ教程二(window版安装)
下载下载地址:https://public.dhe.ibm.com/ibmdl/export/pub/software/websphere/messaging/mqadv/我这里选择的是9.1.0.0版本安装将下载完成的压缩包解压双击Setup.exe直接运行点击软件需求查看系统配置是否满足,右边绿色的对号说明满足需求,…...
Java | HashSet 语法
HashSet 基于 HashMap 来实现的,是一个不允许有重复元素的集合。 HashSet 允许有 null 值。 HashSet 是无序的,即不会记录插入的顺序。 HashSet 不是线程安全的, 如果多个线程尝试同时修改 HashSet,则最终结果是不确定的。 您必须…...
js学习4(运算符)
### 1.算数运算符: 、-、*、\、%(取余)、**(幂方) ## 优先级 同数学课程,可以加括号 ### 2.自增和自减 、--(即数值变量加一或减一) ### 3.赋值运算符 、、-、*、/、... ### 4.比较运…...

2月更新 | Visual Studio Code Python
我们很高兴地宣布,2023年2月版 Visual Studio Code Python 和 Jupyter 扩展现已推出!此版本包括以下改进:从激活的终端启动 VS Code 时的自动选择环境 使用命令 Python: Create Environmen 时可选择需求文件或可选依赖项 预发布:改…...

C++回顾(十八)—— 文件操作
18.1 I/O流概念和流类库结构 1 概念 程序的输入指的是从输入文件将数据传送给程序,程序的输出指的是从程序将数据传送给输出文件。 C输入输出包含以下三个方面的内容: (1)对系统指定的标准设备的输入和输出。即从键盘输入数据&am…...

以java编写员工管理系统(测试过 无问题)
一、系统结果的部分展示 二、题目以及相关要求 三、组成 1.该系统由 Employee 类 、commonEmployee类、Testemd类和managerEmployee类组成 2.Employee实现的代码 public class Employee {private String id;private String name;private String job;private int holiday…...

单例模式之懒汉式
在上篇文章中,我们讲了单例模式中的饿汉式,今天接着来讲懒汉式。 1.懒汉式单例模式的实现 public class LazySingleton {private static LazySingleton instance null;// 让构造函数为private,这样该类就不会被实例化private LazySingleto…...

1638_chdir函数的功能
全部学习汇总:GreyZhang/g_unix: some basic learning about unix operating system. (github.com) 今天看一个半生不熟的小函数,chdir。说半生不熟,是因为这个接口一看就知道是什么功能。然而,这个接口如何用可真就没啥想法了。 …...
使用CEF 获得某头条请求,并生成本地文件的方法
目录 一、获得网站请求响应信息 1、响应过滤 2、匹配过滤URL的函数 3、获得请求响应后的处理...
二十、Django-restframework之视图集和路由器
一、视图集和路由器 REST框架包含了一个处理视图集的抽象,它允许开发人员集中精力建模API的状态和交互,并根据通用约定自动处理URL构造。 视图集类与视图类几乎相同,不同之处在于它们提供的是retrieve或update等操作,而不是get或…...
[深入理解SSD系列 闪存实战2.1.2] SLC、MLC、TLC、QLC、PLC NAND_固态硬盘闪存颗粒类型
闪存最小物理单位是 Cell, 一个Cell 是一个晶体管。 闪存是通过晶体管储存电子来表示信息的。在晶体管上加入了浮动栅贮存电子。数据是0或1取决于在硅底板上形成的浮动栅中是否有电子。有电子为0,无电子为1. SSD 根据闪存颗粒区分,固态硬盘有SLC、MLC、TLC、QLC、PLC 五种类型…...

论文阅读-MGTAB: A Multi-Relational Graph-Based Twitter Account DetectionBenchmark
目录 摘要 1. 引言 2. 相关工作 2.1. 立场检测 2.2.机器人检测 3.数据集预处理 3.1.数据收集和清理 3.2.专家注释 3.3. 质量评估 3.4.特征分析 4. 数据集构建 4.1.特征表示构造 4.2.关系图构建 5. 实验 5.1.实验设置 5.2.基准性能 5.3训练集大小的研究 5.4 社…...

基于libco的c++协程实现(时间轮定时器)
在后端的开发中,定时器有很广泛的应用。 比如: 心跳检测 倒计时 游戏开发的技能冷却 redis的键值的有效期等等,都会使用到定时器。 定时器的实现数据结构选择 红黑树 对于增删查,时间复杂度为O(logn),对于红黑…...
java多线程与线程池-04线程池与AQS
第7章 线程池与AQS java.util.concurrent包中的绝大多数同步工具,如锁(locks)和屏障(barriers)等,都基于AbstractQueuedSynchronizer(简称AQS)构建而成。这个框架提供了一套同步管理的通用机制,如同步状态的原子性管理、线程阻塞与解除阻塞,还有线程排队等。 在JD…...
优化模型验证关键代码25:样本均值近似技术处理两阶段随机旅行商问题及Gurobipy代码验证
大多数数学规划模型都会考虑到研究问题中存在的不确定性,针对这些不确定性,两种常用的处理方法是鲁棒优化和随机规划。这篇论文我们关注后者,也就是两阶段随机旅行商问题;利用套期保值算法计算不同规模TSP的可行解,同时比较了样本均值近似技术的解的情况,并计算了该问题的…...

老爸:“你做的什么游戏测试简直是不务正业!”——我上去就是一顿猛如虎的解释。
经常有人问我:游戏测试到底是干什么呢?是游戏代练?每天玩游戏?装备随便造,怪物随便秒,线上GM指令随便用?可以每天玩玩游戏,不用忙工作,太爽了?有时朋友不理解…...
JVM垃圾回收调优知识点整理
目录 1、JVM内存模型 1.2、堆及垃圾回收 1.3、JVM参数设置经验: 1.4、对象逃逸分析:...

linux安装mysql-8.0.31
1)、下载mysql-8.0.31压缩包两种方式 a.本地下载后上传服务器解压,下载地址:https://downloads.mysql.com/archives/community/ b.服务器使用命令下载,注意:路径在那,就下载到那个位置。 wget https://dev.mysql.com/…...

YSYX学习记录(八)
C语言,练习0: 先创建一个文件夹,我用的是物理机: 安装build-essential 练习1: 我注释掉了 #include <stdio.h> 出现下面错误 在你的文本编辑器中打开ex1文件,随机修改或删除一部分,之后…...

【项目实战】通过多模态+LangGraph实现PPT生成助手
PPT自动生成系统 基于LangGraph的PPT自动生成系统,可以将Markdown文档自动转换为PPT演示文稿。 功能特点 Markdown解析:自动解析Markdown文档结构PPT模板分析:分析PPT模板的布局和风格智能布局决策:匹配内容与合适的PPT布局自动…...

Springcloud:Eureka 高可用集群搭建实战(服务注册与发现的底层原理与避坑指南)
引言:为什么 Eureka 依然是存量系统的核心? 尽管 Nacos 等新注册中心崛起,但金融、电力等保守行业仍有大量系统运行在 Eureka 上。理解其高可用设计与自我保护机制,是保障分布式系统稳定的必修课。本文将手把手带你搭建生产级 Eur…...

Netty从入门到进阶(二)
二、Netty入门 1. 概述 1.1 Netty是什么 Netty is an asynchronous event-driven network application framework for rapid development of maintainable high performance protocol servers & clients. Netty是一个异步的、基于事件驱动的网络应用框架,用于…...
为什么要创建 Vue 实例
核心原因:Vue 需要一个「控制中心」来驱动整个应用 你可以把 Vue 实例想象成你应用的**「大脑」或「引擎」。它负责协调模板、数据、逻辑和行为,将它们变成一个活的、可交互的应用**。没有这个实例,你的代码只是一堆静态的 HTML、JavaScript 变量和函数,无法「活」起来。 …...

tauri项目,如何在rust端读取电脑环境变量
如果想在前端通过调用来获取环境变量的值,可以通过标准的依赖: std::env::var(name).ok() 想在前端通过调用来获取,可以写一个command函数: #[tauri::command] pub fn get_env_var(name: String) -> Result<String, Stri…...

【无标题】湖北理元理律师事务所:债务优化中的生活保障与法律平衡之道
文/法律实务观察组 在债务重组领域,专业机构的核心价值不仅在于减轻债务数字,更在于帮助债务人在履行义务的同时维持基本生活尊严。湖北理元理律师事务所的服务实践表明,合法债务优化需同步实现三重平衡: 法律刚性(债…...

WebRTC调研
WebRTC是什么,为什么,如何使用 WebRTC有什么优势 WebRTC Architecture Amazon KVS WebRTC 其它厂商WebRTC 海康门禁WebRTC 海康门禁其他界面整理 威视通WebRTC 局域网 Google浏览器 Microsoft Edge 公网 RTSP RTMP NVR ONVIF SIP SRT WebRTC协…...

车载诊断架构 --- ZEVonUDS(J1979-3)简介第一篇
我是穿拖鞋的汉子,魔都中坚持长期主义的汽车电子工程师。 老规矩,分享一段喜欢的文字,避免自己成为高知识低文化的工程师: 做到欲望极简,了解自己的真实欲望,不受外在潮流的影响,不盲从,不跟风。把自己的精力全部用在自己。一是去掉多余,凡事找规律,基础是诚信;二是…...

基于开源AI智能名片链动2 + 1模式S2B2C商城小程序的沉浸式体验营销研究
摘要:在消费市场竞争日益激烈的当下,传统体验营销方式存在诸多局限。本文聚焦开源AI智能名片链动2 1模式S2B2C商城小程序,探讨其在沉浸式体验营销中的应用。通过对比传统品鉴、工厂参观等初级体验方式,分析沉浸式体验的优势与价值…...