torch.squeeze() dim=1 dim=-1 dim=2
对数据的维度进行压缩
使用方式:torch.squeeze(input, dim=None, out=None)
将输入张量形状中的1 去除并返回。 如果输入是形如(A×1×B×1×C×1×D),那么输出形状就为: (A×B×C×D)
import torch
x = torch.rand(2, 1, 1, 3, 1, 4)
print('=======x=========')
print(x.shape)
out_1 = torch.squeeze(x)
print('=======out_1=========')
print(out_1.shape)
# =======x=========
# torch.Size([2, 1, 1, 3, 1, 4])
# =======out_1=========
# torch.Size([2, 3, 4])
当给定dim时,那么挤压操作只在给定维度上。例如,输入形状为: (A×1×B), squeeze(input, 0) 将会保持张量不变,只有用 squeeze(input, 1),形状会变成 (A×B)。
注意:
如果dim指定的维度的值为1
第一种情况
import torch
x = torch.rand(2,1,1,3,1,4)
print('=======x=========')
print(x.shape)
out_1 = torch.squeeze(x, dim=1)
print('=======out_1=========')
print(out_1.shape)
# =======x=========
# torch.Size([2, 1, 1, 3, 1, 4])
# =======out_1=========
# torch.Size([2, 1, 3, 1, 4])
import torch
x = torch.rand(2,1,3,1,4)
print('=======x=========')
print(x.shape)
out_1 = torch.squeeze(x, dim=1)
print('=======out_1=========')
print(out_1.shape)
# =======x=========
# torch.Size([2, 1, 3, 1, 4])
# =======out_1=========
# torch.Size([2, 3, 1, 4])
第二种情况
x = torch.rand(1,2,1,1,3,1,4)
print('=======x=========')
print(x.shape)
out_2 = torch.squeeze(x, dim=1)
print('=======out_2=========')
print(out_2.shape)
# =======x=========
# torch.Size([1, 2, 1, 1, 3, 1, 4])
# =======out_2=========
# torch.Size([1, 2, 1, 1, 3, 1, 4])
第三种情况
x = torch.rand(1,1,2,1,1,3,1,4)
print('=======x=========')
print(x.shape)
out_3 = torch.squeeze(x, dim=1)
print('=======out_3=========')
print(out_3.shape)
# =======x=========
# # torch.Size([1, 1, 2, 1, 1, 3, 1, 4])
# # =======out_3=========
# # torch.Size([1, 2, 1, 1, 3, 1, 4])
如果dim指定的维度的值为-1
第一种情况 如果dim指定的维度的值为-1
import torchx = torch.rand(2,1,1,3,1,4)
print('=======x=========')
print(x.shape)
out_1 = torch.squeeze(x, dim=-1)
print('=======out_1=========')
print(out_1.shape)
# =======x=========
# torch.Size([2, 1, 1, 3, 1, 4])
# =======out_1=========
# torch.Size([2, 1, 1, 3, 1, 4])
第二种情况 如果dim指定的维度的值为-1
x = torch.rand(2,1,1,3,1,4,1)
print('=======x=========')
print(x.shape)
out_2 = torch.squeeze(x, dim=-1)
print('=======out_2=========')
print(out_2.shape)
# =======x=========
# torch.Size([2, 1, 1, 3, 1, 4, 1])
# =======out_2=========
# torch.Size([2, 1, 1, 3, 1, 4])
第三种情况 如果dim指定的维度的值为-1
x = torch.rand(2,1,1,3,1,4,1,1)
print('=======x=========')
print(x.shape)
out_3 = torch.squeeze(x, dim=-1)
print('=======out_3=========')
print(out_3.shape)
# =======x=========
# torch.Size([2, 1, 1, 3, 1, 4, 1, 1])
# =======out_3=========
# torch.Size([2, 1, 1, 3, 1, 4, 1])
如果dim指定的维度的值为2
import torchx = torch.rand(2,1,3,1,4)
print('=======x=========')
print(x.shape)
out_1 = torch.squeeze(x, dim=2)
print('=======out_1=========')
print(out_1.shape)
# =======x=========
# torch.Size([2, 1, 3, 1, 4])
# =======out_1=========
# torch.Size([2, 1, 3, 1, 4])x = torch.rand(2,1,1,3,1,4)
print('=======x=========')
print(x.shape)
out_2 = torch.squeeze(x, dim=2)
print('=======out_2=========')
print(out_2.shape)
# =======x=========
# torch.Size([2, 1, 1, 3, 1, 4])
# =======out_2=========
# torch.Size([2, 1, 3, 1, 4])x = torch.rand(1,2,1,1,3,1,1,4)
print('=======x=========')
print(x.shape)
out_3 = torch.squeeze(x, dim=2)
print('=======out_3=========')
print(out_3.shape)
# =======x=========
# torch.Size([1, 2, 1, 1, 3, 1, 1, 4])
# =======out_3=========
# torch.Size([1, 2, 1, 3, 1, 1, 4])
相关文章:
torch.squeeze() dim=1 dim=-1 dim=2
对数据的维度进行压缩 使用方式:torch.squeeze(input, dimNone, outNone) 将输入张量形状中的1 去除并返回。 如果输入是形如(A1B1C1D),那么输出形状就为: (ABCD) import torch x torch.rand(2, 1, 1, 3, 1, 4) print(x) print(x.shape) …...
智慧环保一体化平台简介
据悉,环保问题日益受到人们的关注,智慧环保一体化平台作为解决环保问题的有力工具,正逐渐走进人们的视野。朗观视觉智慧环保一体化平台通过整合各类环保资源,实现环境数据的实时监测、分析与管理,为环境保护提供智能化…...
idea在空工程中添加新模块并测试的步骤
ServicesTest是空的工程,没有pom文件。现在需要在ServicesTest目录下添加新模块作为新的工程,目的是写一下别的技术功能。 原先目录结构,ServicesTest是空的工程,没有pom文件。下面的几个模块是新的工程,相互独立。 1.…...
HCIE-QOS基本原理
QOS基本原理 QOS概述什么是QOSQoS服务模型区分服务模型QoS常用技术 (DiffServ模型)QoS数据处理流程 (DiffServ模型) QoS流分类和流标记QoS数据处理流程为什么需要流分类和流标记 简单流分类外部优先级 - VLAN报文外部优先级 - MPLS报文外部优先级 - IP报文各外部优先级间的对应…...
pycharm基本使用(常用快捷键)
0.下载 pycharm官网下载 选择合适的版本,本文以2024.1为例 1.简单应用 常用快捷键 ctrlD 复制当前行 ctrlY 删除当前行 ctrlX 剪切当前行(可用作删除,更顺手) shift↑ 选中多行ctrlshiftF10 运行 shiftF9 调试ctrl/ 注释当前…...
机器学习--回归模型和分类模型常用损失函数总结(详细)
文章目录 引言 回归模型常用损失函数均方误差(Mean Squared Error, MSE)均方根误差(Root Mean Squared Error, RMSE)平均绝对误差(Mean Absolute Error, MAE)Huber损失(Huber Loss) …...
企业选择数字工厂管理系统供应商的标准是什么
随着信息技术的飞速发展,数字化转型已成为企业提升竞争力、实现可持续发展的必由之路。在制造业领域,数字工厂管理系统实现生产流程自动化、智能化的关键工具,其选择的重要性不言而喻。本文将从多个维度探讨企业选择数字工厂管理系统供应商的…...
京准电钟|基于纳秒级的GPS北斗卫星授时服务器
京准电钟|基于纳秒级的GPS北斗卫星授时服务器 京准电钟|基于纳秒级的GPS北斗卫星授时服务器 你有没有思考过这样一个问题:火车站内,熙熙攘攘,旅客排队进站、列车停靠发车,一切井然有序。一旦有个别时间出现…...
Flutter知识点
Dart语言基础知识 Dart特性: Dart 是少数同时支持 JIT(Just In Time,即时编译)和 AOT(Ahead of Time,运行前编译)的语言之一。语言在运行之前通常都需要编译,JIT 和 AOT 则是最常见…...
2024-06-12 问AI: 在大语言模型中,什么是Jailbreak漏洞?
文心一言 在大语言模型中,Jailbreak漏洞(也称为越狱攻击或指令注入攻击)是一种特定的安全漏洞,它允许用户或攻击者通过精心设计的输入或指令,绕过模型的安全限制,诱导模型产生原本被设定为禁止或限制的输出…...
Vue22-v-model收集表单数据
一、效果图 二、代码 2-1、HTML代码 2-2、vue代码 1、v-model单选框的收集信息 v-model:默认收集的就是元素中的value值。 单选框添加默认值: 2、v-model多选框的收集信息 ①、多个选择的多选 注意: 此处的hobby要是数组!&…...
【深度学习】深入解码:提升NLP生成文本的策略与参数详解
文章目录 解码策略解码参数公式解释代码例子区别 更详细的束搜索的解释更详细的例子解释第一步第二步第三步 解码策略和解码参数在自然语言处理(NLP)模型的生成过程中起着不同的作用,但它们共同决定了生成文本的质量和特性。 解码策略 解码…...
Petalinux由于网络原因产生的编译错误(2)--Fetcher failure:Unable to find file
1 Fetcher failure:Unable to find file 错误 如果编译工程遇到如下图所示的“Fetcher failure for URL”或相似错误 出现这种错误的原因是 Petalinux 在配置和编译的时候,需要联网下载一些文件,由于网 络原因这些文件不能正常下载,导致编译…...
随手记:商品信息过多,展开收起功能
UI原型图: 页面思路: 在商品信息最小item外面有一个包裹所有item的标签,控制这个标签的高度来实现展开收起功能 <!-- 药品信息 --><view class"drugs" v-if"inquiryInfoSubmitBtn"><view class"…...
uniapp上传头像并裁剪图片
第一步写上uniapp自带的选择图片button按钮 点击之后会弹出选择图片的方式 拍照或从相册选择图片后将会跳到图片裁剪 然后我们裁剪完之后点击确定在上传图片 这里是上传图片的接口 拿到本地图片 上传的话自己想以那种方式上传都可以...
9.1.3 简单介绍单阶段模型YOLO、YOLOv2、YOLO9000、YOLOv3的发展过程
9.1.3 简单介绍单阶段模型YOLO、YOLOv2、YOLO9000、YOLOv3的发展过程 前情回顾:9.1.2 简单介绍两阶段模型R-CNN、SPPNet、Fast R-CNN、Faster R-CNN的发展过程 摘要 YOLOYOLOv2YOLO9000YOLOv3基本思想使用一个端到端的卷积神经网络直接预测目标的类别和位置针对YOL…...
英智教育智能体,AI Agent赋能教育培训行业数字化升级
教育是当前需求巨大且没有足够人力来满足的领域,每个学生个体差异较大,有限的教师资源无法针对性实行差异教学,学生学不会,教师教学压力大等问题普遍存在。 面对这些难题,英智在通用大模型能力的基础上,整合…...
什么是电脑监控软件?六款知名又实用的电脑监控软件
电脑监控软件是一种专为监控和记录计算机活动而设计的应用程序,它能够帮助用户(如家长、雇主或系统管理员)了解并管理目标计算机的使用情况。这些软件通常具有多样化的功能,包括但不限于屏幕捕捉、网络行为监控、应用程序使用记录…...
小程序名片怎么生成?AI名片生成器源码系统 为企业店铺创建自己的数字名片
在数字化时代,小程序名片已经成为企业店铺展示自身形象、推广产品和服务的重要工具。分享一个AI名片生成器源码系统春哥AI雷达智能名片小程序系统企业商业运营版,含完整代码包和详细的图文安装部署搭建教程,新手也能轻松使用,源码…...
浅谈PMP:项目管理的专业化认证
引言: 项目管理作为现代企业运营的核心环节,其重要性不言而喻。随着全球化的加速和市场竞争的加剧,企业对项目管理的需求日益增长,项目管理专业人员的需求也水涨船高。在这样的背景下,PMP(Project Managem…...
观成科技:隐蔽隧道工具Ligolo-ng加密流量分析
1.工具介绍 Ligolo-ng是一款由go编写的高效隧道工具,该工具基于TUN接口实现其功能,利用反向TCP/TLS连接建立一条隐蔽的通信信道,支持使用Let’s Encrypt自动生成证书。Ligolo-ng的通信隐蔽性体现在其支持多种连接方式,适应复杂网…...
在rocky linux 9.5上在线安装 docker
前面是指南,后面是日志 sudo dnf config-manager --add-repo https://download.docker.com/linux/centos/docker-ce.repo sudo dnf install docker-ce docker-ce-cli containerd.io -y docker version sudo systemctl start docker sudo systemctl status docker …...
Qt Widget类解析与代码注释
#include "widget.h" #include "ui_widget.h"Widget::Widget(QWidget *parent): QWidget(parent), ui(new Ui::Widget) {ui->setupUi(this); }Widget::~Widget() {delete ui; }//解释这串代码,写上注释 当然可以!这段代码是 Qt …...
2.Vue编写一个app
1.src中重要的组成 1.1main.ts // 引入createApp用于创建应用 import { createApp } from "vue"; // 引用App根组件 import App from ./App.vue;createApp(App).mount(#app)1.2 App.vue 其中要写三种标签 <template> <!--html--> </template>…...
视频字幕质量评估的大规模细粒度基准
大家读完觉得有帮助记得关注和点赞!!! 摘要 视频字幕在文本到视频生成任务中起着至关重要的作用,因为它们的质量直接影响所生成视频的语义连贯性和视觉保真度。尽管大型视觉-语言模型(VLMs)在字幕生成方面…...
2025 后端自学UNIAPP【项目实战:旅游项目】6、我的收藏页面
代码框架视图 1、先添加一个获取收藏景点的列表请求 【在文件my_api.js文件中添加】 // 引入公共的请求封装 import http from ./my_http.js// 登录接口(适配服务端返回 Token) export const login async (code, avatar) > {const res await http…...
GitHub 趋势日报 (2025年06月08日)
📊 由 TrendForge 系统生成 | 🌐 https://trendforge.devlive.org/ 🌐 本日报中的项目描述已自动翻译为中文 📈 今日获星趋势图 今日获星趋势图 884 cognee 566 dify 414 HumanSystemOptimization 414 omni-tools 321 note-gen …...
《基于Apache Flink的流处理》笔记
思维导图 1-3 章 4-7章 8-11 章 参考资料 源码: https://github.com/streaming-with-flink 博客 https://flink.apache.org/bloghttps://www.ververica.com/blog 聚会及会议 https://flink-forward.orghttps://www.meetup.com/topics/apache-flink https://n…...
零基础在实践中学习网络安全-皮卡丘靶场(第九期-Unsafe Fileupload模块)(yakit方式)
本期内容并不是很难,相信大家会学的很愉快,当然对于有后端基础的朋友来说,本期内容更加容易了解,当然没有基础的也别担心,本期内容会详细解释有关内容 本期用到的软件:yakit(因为经过之前好多期…...
Hive 存储格式深度解析:从 TextFile 到 ORC,如何选对数据存储方案?
在大数据处理领域,Hive 作为 Hadoop 生态中重要的数据仓库工具,其存储格式的选择直接影响数据存储成本、查询效率和计算资源消耗。面对 TextFile、SequenceFile、Parquet、RCFile、ORC 等多种存储格式,很多开发者常常陷入选择困境。本文将从底…...
