当前位置: 首页 > news >正文

论文阅读Rolling-Unet,卷积结合MLP的图像分割模型

这篇论文提出了一种新的医学图像分割网络Rolling-Unet,目的是在不用Transformer的前提下,能同时有效提取局部特征和长距离依赖性,从而在性能和计算成本之间找到良好的平衡点。

论文地址:https://ojs.aaai.org/index.php/AAAI/article/view/28173

1,动机(Motivation)

现阶段主流医学图像分割模型大多基于CNN和Transformer,作者认为CNN和Transformer都有缺陷。CNN难以捕捉长距离依赖性,而Transformer计算复杂度高,局部特征学习能力差。

作者认为现有的结合CNN和Transformer的方法尚未能在性能和计算成本之间找到良好的平衡点。

而MLP拥有代替Transformer提取全局特征的潜力。

下面,我们按照惯例从粗到细来拆解这个模型。

2,模型整体结构:

模型整体结构如下,是一个经典的U型编码器-解码器结构,只不过编码器分支最后一个模块,解码器分支第一个模块以及瓶颈层被替换成了全新的Lo2块(Long-Local Block)。

3,Lo2块(Long-Local Block)

Lo2模块的整体结构如下所示

该模块以并行的DOR-MLP(Double Orthogonal Rolling MLP)模块和深度可分离卷积(DSC)模块组成,以同时捕获局部上下文信息和长距离依赖性。两个子模块的特征拼接后,通过Channel-mixing进一步融合,这一步骤有助于不同通道间的特征交互,增强特征表达能力。

补充:Channel-mixing是MLP-Mixer架构中提出的一种技术,用于实现不同通道之间的特征融合。它是一种替代传统卷积操作的手段,特别是在全连接或混合维度特征的场景中。Channel-mixing首先将特征张量在高度和宽度上进行展平,使得每个通道的特征成为一维向量。然后,对每个通道的特征向量应用一个线性变换,通常是一个全连接层,并可能跟随一个非线性激活函数,如GELU。Channel-mixing的作用类似于1x1卷积,它允许网络在不增加太多计算负担的情况下,学习特征的跨通道交互。)

4,DOR-MLP模块

结构如下:

DOR-MLP模块通过并行化两个互补的OR-MLP(Orthogonal Rolling MLP)模块来捕获四个方向(水平、垂直、对角正向和对角负向)的长距离依赖性。

过程具体如下:

1)每个OR-MLP都有两个方向正交的R-MLP模块也就是一个在垂直方向做Rolling操作,一个在水平方向做。从而可以捕获两个长距离依赖。

2)两个并行的OR-MLP中的R-MLP顺序不同,第一个OR-MLP模块先在水平方向上应用R-MLP,然后在垂直方向上应用R-MLP;第二个OR-MLP模块先在垂直方向上应用R-MLP,然后在水平方向上应用R-MLP。这样,每个OR-MLP模块都能捕获两个正交方向上的依赖性,形成对角线方向的感知能力。

3)在每个OR-MLP中还有残差连接,以增强模型的学习能力和避免梯度消失问题。

4)并行处理后,两个OR-MLP模块的输出沿着通道维度进行拼接,以获得不同方向的特征表示。

5)之后,特征会经过LayerNorm和Channel-mixing,Channel-mixing是一种特征融合技术,具体原理和细节我在文章第三段已经介绍了,这里就不讲了。

5,R-MLP模块

1)R-MLP模块对每个通道层的特征图沿相同方向执行Rolling操作。Rolling操作包括以下两个步骤:移位和裁剪。

在移位步骤中,特征图会根据移位步长 k在水平方向上进行移动。移位可以是向左或向右,具体取决于 k的正负值。移位后的每个通道的特征图可能会超出原始特征图的边界。裁剪步骤会去除这些多余的部分,并将缺失的部分补充回到另外一边,确保所有通道的特征图在宽度上对齐。

如果这里没看懂rolling的原理和如何发挥作用的,请移步文章最后一个段落,看看我的解释。

2)接着,在Rolling操作之后,R-MLP在每个空间位置索引 (hi,wj) 上执行带有权重共享的通道投影,以编码长距离依赖性。

通道投影是指在特征矩阵的每个空间位置(即图像的每个像素位置)上,对所有通道的特征进行线性变换,以生成新的特征表示。通道投影的目的是将Rolling操作后的多通道特征进行整合和编码,以捕获长距离依赖性。

在Rolling操作之后,每个空间位置的特征图可能会有不同的宽度或高度特征。通道投影通过在每个空间位置应用一个线性变换(通常是一个全连接层或线性层),将这些特征投影到一个新的特征空间中。这个线性变换可以是参数化的,允许网络在训练过程中学习到最优的投影方式。在R-MLP中,所有空间位置的通道投影共享相同的权重,这意味着无论特征图的大小如何,参数的数量保持不变。这有助于减少模型的参数量并提高计算效率。

3)在通道投影之后,通常会应用一个非线性激活函数(如GELU),以引入非线性特性。

6,我对rolling的理解

首先,我们要明确,这个模型并没有用自注意力或者协方差这类的矩阵乘法,而是用的取一个坐标的所有channel维特征做线性变换。

那么,如果不用rolling,它就不能计算到特征图上每个点跟其他所有点的相关性。而最多只能计算到处在水平或垂直线上的点之间的相关性。

理解的关键还是下面这个图,不同颜色深浅其实代表的是原始的位置。

rolling之后,我们取一个坐标点(h,w)的所有channel,其实取的已经不完全是原始的(h,w)对应的值了。我们可以看到颜色已经混了。这代表同一索引在不同channel已经混合了其他位置坐标的值。因此,通过线性变换,可以计算出不同坐标像素之间的相关性。

相关文章:

论文阅读Rolling-Unet,卷积结合MLP的图像分割模型

这篇论文提出了一种新的医学图像分割网络Rolling-Unet,目的是在不用Transformer的前提下,能同时有效提取局部特征和长距离依赖性,从而在性能和计算成本之间找到良好的平衡点。 论文地址:https://ojs.aaai.org/index.php/AAAI/article/view/2…...

Linux Shell命令vim使用

一、引例 以判断引出(学过C其他语言容易接受)。 简单命令说明: -e 测试文件是否存在 -f 测试文件是否为普通文件 -d 测试文件是否为目录 -r 测试当前用户对某文件是否具有“可读”权限 -w 测试当前用户对某文件是否具有“可写”权限…...

如何将 API 管理从 Postman 转移到 Apifox

上一篇推文讲到用 Swagger 管理的 API 怎么迁移到 Apifox,有许多同学反馈说能不能介绍一下 Postman 的迁移以及迁移过程中需要注意的事项。那么今天,它来了! 从 Postman 迁移到 Apifox 的方法有两种: 导出 Postman 集合 &#x…...

用链表实现的C语言队列

一、队列概述 在数据结构中,队列是一种先进先出(FIFO)的线性表。它在许多应用场景中非常有用,例如任务调度、进程管理、资源管理等。队列是一种重要的数据结构,其主要特点是先进先出(FIFO, First In First …...

国产SDI视频均衡驱动器,功能与 LMH0387/LMH0344 一致

视频均衡驱动器,功能与 LMH0387 一致、LMH0344。本期间支持 DVB-ASI,作为驱动器能够选择输出速率,作为均衡接收器能支持100m以上传输距离(线缆类型Belden 1694A)。最大支持3Gbps 速率的信号 2 产品特征 a&#xff09…...

如何用Xinstall CPS结算系统打破传统营销桎梏,实现用户增长?

在互联网流量红利逐渐衰退的今天,App推广和运营面临着前所未有的挑战。如何快速搭建起满足用户需求的运营体系,成为了众多企业急待解决的问题。而在这个关键时刻,Xinstall CPS结算系统应运而生,以其独特的优势帮助企业解决了一系列…...

(代数:解一元二次方程)可以使用下面的公式求一元二次方程 ax2+bx+c0 的两个根:

(代数:解一元二次方程)可以使用下面的公式求一元二次方程 ax2bxc0 的两个根: b2-4ac 称作一元二次方程的判别式。如果它是正值,那么一元二次方程就有两个实数根。 如果它为 0,方程式就只有一个根。如果它是负值,方程式无实根。 编写程序,提示…...

如何提高网站收录?

GSI服务就是专门干这个的,这个服务用的是光算科技自己研发的GPC爬虫池系统。这个系统通过建立一个庞大的站群和复杂的链接结构,来吸引谷歌的爬虫。这样一来,你的网站就能更频繁地被谷歌的爬虫访问,从而提高被收录的机会。 说到效…...

Docker 学习总结(83)—— 配置文件daemon.json介绍及优化建议

一、daemon.json 文件概述 daemon.json是Docker守护进程的配置文件,它允许系统管理员自定义Docker守护程序的行为。此文件通常位于/etc/docker/目录下。通过修改daemon.json,可以调整Docker守护进程的多种设置,包括网络配置、日志记录、存储驱动等。 二、daemon.json 文件结…...

Javaweb04-Servlet技术2(HttpServletResponse, HttpServletRequest)

Servlet技术基础 HttpServletResponse对象 HttpServletResponce对象是继承ServletResponse接口,专门用于封装Http请求 HttpServletResponce有关响应行的方法 方法说明功能描述void setStatus(int stauts)用于设置HTTP响应消息的状态码,并生成响应状态…...

chat gpt基本原理解读

chat gpt基本原理解读 ChatGPT是一种基于生成式预训练变换器(Generative Pre-trained Transformer, GPT)的对话模型,主要通过大量的文本数据训练生成自然语言回复。以下是ChatGPT的基本原理解读: 1. 基本架构 ChatGPT 是基于 GPT…...

单目标应用:基于蛇鹫优化算法SBOA的微电网优化(MATLAB代码)

一、微电网模型介绍 微电网多目标优化调度模型简介_vmgpqv-CSDN博客 参考文献: [1]李兴莘,张靖,何宇,等.基于改进粒子群算法的微电网多目标优化调度[J].电力科学与工程, 2021, 37(3):7 二、蛇鹫优化算法求解微电网 2.1算法简介 蛇鹫优化算法(Secre…...

MySQL系列-安装配置使用说明(MAC版本)

1、前言 本文将介绍MySQL的安装配置以及基本语法操作说明 环境:mac 版本:MySQL 8.0.28 之前电脑安装卸载过,后面在装的时候遇到一些问题,用了四五天才解决,主要是参考 https://blog.csdn.net/zz00008888/article/deta…...

vue elementui el-input 正则验证,限制只能输入数字和小数

vue elementui el-input 正则验证 限制只能输入数字和小数,以下两种方法都可以: 1、οninput“value value.replace(/[^0-9.]/g,‘’)” 2、οninput“value value.replace(/[^\d.]/g, ‘’)” 限制只能输入数字: 1、oninput “valuevalu…...

强化学习入门

简介 强化学习(Reinforcement Learning, RL),又称再励学习、评价学习或增强学习,是机器学习的范式和方法论之一,用于描述和解决智能体(agent)在与环境的交互过程中通过学习策略以达成回报最大化…...

简约不简单,建筑装饰演绎现代美学

走在城市的大街小巷,你是否曾被那些独特而精美的建筑装饰所吸引?每一栋建筑都像是艺术家的杰作,通过精美的装饰诉说着它的故事。 我们的建筑装饰,不仅注重外在的美观,更追求内在的品质。从古典的雕花到现代的简约线条&…...

SpringBoot调用WebService的实践

作者所在公司的系统间的信息交互是通过webservice完成。如:MES与SAP的交互,MES与WMS的交换,MES与SRM的交互,MES与IOT的交互等。 MES是用.NET VS2008 C#写的,调用webservice很简单,这里不再赘述。如有想了解…...

源码编译构建LAMP

Apache 起源 源于A Patchy Server,著名的开源Web服务软件1995年时,发布Apache服务程序的1.0版本由Apache软件基金会(ASF)负责维护最新的名称为“Apache HTTP Server”官方站点:http://httpd.apache.org/ 主要特点 开发源代码/…...

搜索是门艺术,大神都是这样找资源

以下所有资源均可在星云导航找到,网站地址:https://www.xygalaxy.com/ 浏览器搜索高级用法 1、排除干扰,指定关键词 1.1、排除指定关键字 格式:关键字1 -关键字2比如搜索:星云导航,不想要CSDN的内容 星…...

【设计模式深度剖析】【5】【行为型】【迭代器模式】

👈️上一篇:策略模式 | 下一篇:中介者模式👉️ 设计模式-专栏👈️ 文章目录 迭代器模式定义英文原话直译如何理解呢? 迭代器模式的角色1. Iterator(迭代器)2. ConcreteIterator(具体迭代器…...

怎么更快捷的修改图片大小?压缩图片jpg、png、gif的快捷方法

jpg作为最常用的一种图片格式,在遇到图片太大问题时,该如何操作能够快速在压缩图片jpg的大小呢?图片太大无法上传时目前常见的一个使用问题,只有将图片处理到合适的大小才可以正常在平台上传使用,一般情况下想要快速解…...

Shell脚本 if语句

条件测试: $? 返回码 判断命令或者脚本是否执行成功(最近的一条) 0 true 为真就是成功 成立 非0 false 失败或者异常 test命令 可以进行条件测试 然后根据的是返回值来判断条件是否成立。 -e 测试目录或者文件是否存在 exist -d 测试…...

集合查询-并(UNION)集运算、交(INTERSECT)集运算、差(EXCEPT)集运算

一、概述 集合查询是对两个SELECT语句的查询结果进行再进行处理的查询 二、条件 1、两个SELECT语句的查询结果必须是属性列数目相同 2、两个SELECT语句的查询结果必须是对应位置上的属性列必须是相同的数据类型 三、并(UNION)运算 1、语法格式: SELECT 语句1…...

常用的bit位操作

//判断某1位是1还是0 #ifndef GET_BIT #define BIT_IS_1(value,bitpos) (((value)&(1<<(bitpos)))>>(bitpos)) #endif //读取指定位置bit位的值 #ifndef GET_BIT #define GET_BIT(value,bitpos) ((value)&(1<<(bitpos))) #endif //取反指定位置bit位…...

自动控制原理【期末复习】(二)

无人机上桨之后可以在调试架上先调试&#xff1a; 1.根轨迹的绘制 /// 前面针对的是时域分析&#xff0c;下面针对频域分析&#xff1a; 2.波特图 3.奈维斯特图绘制 1.奈氏稳定判据 2.对数稳定判据 3.相位裕度和幅值裕度...

机器学习——集成学习和梯度提升决策树

集成学习 不同的算法都可以对解决同一个问题&#xff0c;但是可能准确率不同&#xff0c;集成学习就是不同算法按照某种组合来解决问题&#xff0c;使得准确率提升。 那怎么组合算法呢&#xff1f; 自举聚合算法**&#xff08;bagging&#xff09;** 顾名思义是 自举聚合 自举…...

MYSQL 查看SQL执行计划

一、explain explain select id,db,user,host,command,time,state,info from information_schema.processlist order by time desc; id: 查询的标记&#xff0c;可以查看不同查询的执行顺序。 select_type: 查询的类型&#xff0c;如SIMPLE、SUBQUERY、PRIMARY等。 table: …...

ARM-V9 RME(Realm Management Extension)系统架构之系统安全能力的MPAM

安全之安全(security)博客目录导读 关于RME的MPAM变化的完整定义见在《Arm Architecture Reference Manual Supplement, Memory System Resource Partitioning and Monitoring (MPAM), for A-profile architecture》中详细说明。 实现RME的处理元件(PE)能够生成一个2位的MPAM_…...

cuda 架构设置

import torch torch.cuda.get_device_capability(0) 添加cmake options&#xff1a; -DCMAKE_CUDA_ARCHITECTURES86 -DCMAKE_CUDA_COMPILER/usr/local/cuda-11.8/bin/nvcc cmake工程出现“CMAKE_CUDA_ARCHITECTURES must be non-empty if set.“的解决方法_failed to detec…...

基于 Vue 3 封装一个 ECharts 图表组件

在前端开发中&#xff0c;数据可视化是展示数据的重要方式之一。ECharts 是一个强大的开源可视化库&#xff0c;能够帮助我们轻松地创建各种图表。本文将介绍如何在 Vue 3 项目中使用 ECharts 封装一个图表组件。 代码 <template><div ref"chartRef" styl…...