Python使用策略模式生成TCP数据包
使用策略模式(Strategy Pattern)来灵活地生成不同类型的TCP数据包。
包括三次握手、数据传输和四次挥手。
from scapy.all import *
from scapy.all import Ether, IP, TCP, UDP, wrpcap
from abc import ABC, abstractmethodclass TcpPacketStrategy(ABC):@abstractmethoddef generate_packets(self, src_ip, dst_ip, src_port, dst_port, seq_num, ack_num, data=None):passclass ThreeWayHandshakeStrategy(TcpPacketStrategy):def generate_packets(self, src_ip, dst_ip, src_port, dst_port, seq_num, ack_num, data=None):syn = IP(src=src_ip, dst=dst_ip) / TCP(sport=src_port, dport=dst_port, flags='S', seq=seq_num)syn_ack = IP(src=dst_ip, dst=src_ip) / TCP(sport=dst_port, dport=src_port, flags='SA', seq=1000,ack=syn.seq + 1)ack = IP(src=src_ip, dst=dst_ip) / TCP(sport=src_port, dport=dst_port, flags='A', seq=syn.seq + 1,ack=syn_ack.seq + 1)return [syn, syn_ack, ack]class DataTransferStrategy(TcpPacketStrategy):def generate_packets(self, src_ip, dst_ip, src_port, dst_port, seq_num, ack_num, data_list=None):packets = []for data in data_list:packet = IP(src=src_ip, dst=dst_ip) / TCP(sport=src_port, dport=dst_port, flags='PA', seq=seq_num,ack=ack_num) / Raw(load=data)packets.append(packet)seq_num += len(data) # 假设数据长度即为字节数return packetsclass FourWayTeardownStrategy(TcpPacketStrategy):def generate_packets(self, src_ip, dst_ip, src_port, dst_port, seq_num, ack_num, data=None):# 客户端发送 FINfin = IP(src=src_ip, dst=dst_ip) / TCP(sport=src_port, dport=dst_port, flags='FA', seq=seq_num, ack=ack_num)# 服务器收到 FIN 后发送 ACKack1 = IP(src=dst_ip, dst=src_ip) / TCP(sport=dst_port, dport=src_port, flags='A', seq=ack_num, ack=fin.seq + 1)# 服务器发送 FINfin2 = IP(src=dst_ip, dst=src_ip) / TCP(sport=dst_port, dport=src_port, flags='FA', seq=ack_num,ack=fin.seq + 1)# 客户端发送 ACK 确认ack2 = IP(src=src_ip, dst=dst_ip) / TCP(sport=src_port, dport=dst_port, flags='A', seq=fin.seq + 1,ack=fin2.seq + 1)return [fin, ack1, fin2, ack2]class TcpPcapGenerator:def __init__(self, strategy: TcpPacketStrategy):self._strategy = strategydef set_strategy(self, strategy: TcpPacketStrategy):self._strategy = strategydef generate(self, src_ip, dst_ip, src_port, dst_port, seq_num, ack_num, data=None):return self._strategy.generate_packets(src_ip, dst_ip, src_port, dst_port, seq_num, ack_num, data)# 使用示例
if __name__ == "__main__":src_ip = "192.168.1.2"dst_ip = "192.168.1.1"src_port = 12345dst_port = 80seq_num = 1000ack_num = 0# 生成三次握手数据包generator = TcpPcapGenerator(ThreeWayHandshakeStrategy())handshake_packets = generator.generate(src_ip, dst_ip, src_port, dst_port, seq_num, ack_num)# 计算初始序列号和确认号seq_num += 1ack_num = 1001# 生成数据传输数据包generator.set_strategy(DataTransferStrategy())data_packets = generator.generate(src_ip, dst_ip, src_port, dst_port, seq_num, ack_num, ["Hello", "World", "Data"])# 更新序列号和确认号for packet in data_packets:seq_num += len(packet[Raw].load)# 生成四次挥手数据包generator.set_strategy(FourWayTeardownStrategy())teardown_packets = generator.generate(src_ip, dst_ip, src_port, dst_port, seq_num, ack_num)# 合并所有数据包all_packets = handshake_packets + data_packets + teardown_packets# 写入到PCAP文件wrpcap('tcp_traffic.pcap', all_packets)print("PCAP file generated: tcp_traffic.pcap")
PCAP file generated: tcp_traffic.pcap

解释:syn = IP(src=src_ip, dst=dst_ip) / TCP(sport=src_port, dport=dst_port, flags='S', seq=seq_num)
这行代码的作用如下:
IP 层部分
IP(src=src_ip, dst=dst_ip):
IP是 Scapy 中用于生成 IP 层数据包的类。src=src_ip指定了 IP 数据包的源 IP 地址,它是数据包的发送方的 IP 地址。dst=dst_ip指定了 IP 数据包的目的 IP 地址,它是数据包的接收方的 IP 地址。TCP 层部分
TCP(sport=src_port, dport=dst_port, flags='S', seq=seq_num):
TCP是 Scapy 中用于生成 TCP 层数据包的类。sport=src_port指定了 TCP 数据包的源端口号,这是发送方的端口号。dport=dst_port指定了 TCP 数据包的目的端口号,这是接收方的端口号。flags='S'设置了 TCP 标志位为 SYN (S),表示这是一个 SYN 数据包,用于发起一个新的 TCP 连接。seq=seq_num设置了 TCP 数据包的序列号,通常在建立连接时初始值随机生成。组合 IP 和 TCP 部分:
IP(...) / TCP(...)是 Scapy 中的一个语法,表示将 IP 层和 TCP 层的部分组合在一起,构成一个完整的数据包。- 斜杠
/操作符在 Scapy 中用于将不同层的协议组合在一起,形成一个完整的分层数据包。这行代码创建了一个源 IP 地址为
src_ip,目的 IP 地址为dst_ip,源端口为src_port,目的端口为dst_port,标志位为 SYN,序列号为seq_num的 TCP SYN 数据包。这个数据包用于发起一个新的 TCP 连接,通常是 TCP 三次握手的第一步。
相关文章:
Python使用策略模式生成TCP数据包
使用策略模式(Strategy Pattern)来灵活地生成不同类型的TCP数据包。 包括三次握手、数据传输和四次挥手。 from scapy.all import * from scapy.all import Ether, IP, TCP, UDP, wrpcap from abc import ABC, abstractmethodclass TcpPacketStrategy(A…...
无文件落地分离拆分-将shellcode从文本中提取-file
马子分为shellcode和执行代码. --将shellcode单独拿出,放在txt中---等待被读取执行 1-cs生成python的payload. 2-将shellcode进行base64编码 import base64code b en_code base64.b64encode(code) print(en_code) 3-将编码后的shellcode放入文件内 4-读取shellcod…...
MySQL 日志(一)
本篇主要介绍MySQL日志的相关内容。 目录 一、日志简介 常用日志 一般查询日志和慢查询日志的输出形式 日志表 二、一般查询日志 三、慢查询日志 四、错误日志 一、日志简介 常用日志 在MySQL中常用的日志主要有如下几种: 这些日志通常情况下都是关闭的&a…...
XML 编辑器:功能、选择与使用技巧
XML 编辑器:功能、选择与使用技巧 简介 XML(可扩展标记语言)是一种用于存储和传输数据的标记语言。由于其灵活性和广泛的应用,XML编辑器成为开发者、数据管理者和内容创作者的重要工具。本文将探讨XML编辑器的功能、选择标准以及…...
单例模式(设计模式)
文章目录 概述1. 饿汉式(hungry Initialization)2. 懒汉式(Lazy Initialization)3.双重检查锁定(Double-Checked Locking)4. 静态内部类(Static Inner Class)5. 枚举(Enu…...
提升你的编程体验:自定义 PyCharm 背景图片
首先,打开 PyCharm 的设置菜单,点击菜单栏中的 File > Settings 来访问设置,也可以通过快捷键 CtrlAItS 打开设置。 然后点击Appearance & Behavior > Appearance。 找到Background image...左键双击进入。 Image:传入自己需要设置…...
SpringCloud与Dubbo区别?
相同点: dubbo与springcloud都可以实现RPC远程调用。 dubbo与springcloud都可以使用分布式、微服务场景下。 区别: dubbo有比较强的背景,在国内有一定影响力。 dubbo使用zk或redis作为作为注册中心 springcloud使用eureka作为注册中心 dubbo支持多种协议,默认使用…...
简单Mesh多线程合并,使用什么库性能更高
1)简单Mesh多线程合并,使用什么库性能更高 2)Unity Semaphore.WaitForSignal耗时高 3)VS编辑的C#代码注释的中文部分乱码 4)变量IntPtr m_cachePtr切换线程后变空 这是第389篇UWA技术知识分享的推送,精选了…...
长亭培训加复习安全产品类别
下面这个很重要参加hw时要问你用的安全产品就有这个 检测类型产品 偏审计 安全防御类型 EDR类似于杀毒软件 安全评估 任何东西都要经过这个机械勘察才能上线 安全管理平台 比较杂 比较集成 审计 漏扫 评估 合在这一个平台 也有可能只是管理 主机理解为一个电脑 安了终端插件…...
memcached介绍和详解
Memcached 是一种高性能、分布式内存缓存系统,常用于加速动态 web 应用程序的性能,通过缓存数据库查询结果、对象等数据,减少对数据库的访问压力,从而提高响应速度和系统吞吐量。 ### Memcached 的特点和工作原理 #### 特点 1. …...
Spring boot 注解实现幂等性
1. 添加 Spring AOP 依赖 在 pom.xml 中添加如下依赖: <dependencies><!-- Spring AOP dependency --><dependency><groupIdorg.springframework.boot</groupId><artifactIdspring-boot-starter-aop</artifactId></depend…...
NVIDIA Jetson AI边缘计算盒子
这里写自定义目录标题 烧录系统安装Jetpack安装cuda安装Pytorch安装onnxruntime安装qv4l2 烧录系统 选择一台Linux系统,或者VMware的电脑作为主机,烧录系统和后面安装Jetpack都会用到。 根据供应商的指令烧录的,暂时还没验证官方烧录&#x…...
React核心概念、主要特点及组件的生命周期
在前端开发的世界中,React以其独特的魅力和强大的功能,成为了构建用户界面的首选框架之一。本文将深入探讨React的核心概念、主要特点以及组件生命周期 React简介 React是由Facebook开发并开源的前端JavaScript库,专门用于构建可重用的UI组…...
Java基础面试重点-1
0. 符号: *:记忆模糊,验证后特别标注的知识点。 &:容易忘记知识点。 *:重要的知识点。 1. 简述一下Java面向对象的基本特征(四个),以及你自己的应用? 抽象&#…...
18. 四数之和 - 力扣
1. 题目 给你一个由 n 个整数组成的数组 nums ,和一个目标值 target 。请你找出并返回满足下述全部条件且不重复的四元组 [nums[a], nums[b], nums[c], nums[d]] (若两个四元组元素一一对应,则认为两个四元组重复): 0 …...
[vue2]深入理解路由
本节目标 单页应用程序路由概念VueRouter基本使用组件分类存放路由模块封装声明式导航其他路由配置路由模式编程式导航案例-面经基础版 单页应用程序 单页应用程序(SPA): 所有的功能都在一个HTML页面上实现 网易云音乐: 网易云音乐 多页应用程序(MPA): 不同功能通过切换不同…...
搜维尔科技:SenseGlove为什么不同的手套尺寸对触觉技术至关重要
senseglove适当的尺寸可确保: 1.精确的运动跟踪:合适的手套保持部件稳定,防止不准确的运动跟踪 2.有效的力反馈:我们基于肌腱的力反馈系统通过对手套的绳子施加力来模拟肌肉的运动。不稳定的配合会影响反馈,使其感觉虚弱和柔软。 3.舒适性和敏感性:我…...
java算法:选择排序
文章标题 概述与基本实现优缺点尝试优化 概述与基本实现 选择排序(Selection Sort)是一种简单直观的排序算法。它的基本思想是每次从待排序的元素中选择最小(或最大)的元素,放置在已排序的部分的末尾,直到…...
helm升级部署时出现升级挂起状态处理
问题 在使用helm 升级命令时,升级命令如下: helm upgrade -i -f ./values-prod.yaml myapp ./ -n myns --create-namespace中途因为网络原因,再次运行上面升级命令时出现,如下错误: Error: UPGRADE FAILED: another …...
16、架构-可观测性-事件日志详细解析
事件日志 事件日志是记录系统运行期间发生的离散事件的关键工具。它们在系统的可观测性中起着至关重要的作用,帮助开发者和运维人员追踪、分析和解决系统问题。以下是对事件日志处理各个方面的详细解析,并结合具体的数据案例和技术支撑。 输出 日志输出…...
应用升级/灾备测试时使用guarantee 闪回点迅速回退
1.场景 应用要升级,当升级失败时,数据库回退到升级前. 要测试系统,测试完成后,数据库要回退到测试前。 相对于RMAN恢复需要很长时间, 数据库闪回只需要几分钟。 2.技术实现 数据库设置 2个db_recovery参数 创建guarantee闪回点,不需要开启数据库闪回。…...
微软PowerBI考试 PL300-选择 Power BI 模型框架【附练习数据】
微软PowerBI考试 PL300-选择 Power BI 模型框架 20 多年来,Microsoft 持续对企业商业智能 (BI) 进行大量投资。 Azure Analysis Services (AAS) 和 SQL Server Analysis Services (SSAS) 基于无数企业使用的成熟的 BI 数据建模技术。 同样的技术也是 Power BI 数据…...
为什么需要建设工程项目管理?工程项目管理有哪些亮点功能?
在建筑行业,项目管理的重要性不言而喻。随着工程规模的扩大、技术复杂度的提升,传统的管理模式已经难以满足现代工程的需求。过去,许多企业依赖手工记录、口头沟通和分散的信息管理,导致效率低下、成本失控、风险频发。例如&#…...
如何将联系人从 iPhone 转移到 Android
从 iPhone 换到 Android 手机时,你可能需要保留重要的数据,例如通讯录。好在,将通讯录从 iPhone 转移到 Android 手机非常简单,你可以从本文中学习 6 种可靠的方法,确保随时保持连接,不错过任何信息。 第 1…...
Caliper 配置文件解析:config.yaml
Caliper 是一个区块链性能基准测试工具,用于评估不同区块链平台的性能。下面我将详细解释你提供的 fisco-bcos.json 文件结构,并说明它与 config.yaml 文件的关系。 fisco-bcos.json 文件解析 这个文件是针对 FISCO-BCOS 区块链网络的 Caliper 配置文件,主要包含以下几个部…...
Device Mapper 机制
Device Mapper 机制详解 Device Mapper(简称 DM)是 Linux 内核中的一套通用块设备映射框架,为 LVM、加密磁盘、RAID 等提供底层支持。本文将详细介绍 Device Mapper 的原理、实现、内核配置、常用工具、操作测试流程,并配以详细的…...
2023赣州旅游投资集团
单选题 1.“不登高山,不知天之高也;不临深溪,不知地之厚也。”这句话说明_____。 A、人的意识具有创造性 B、人的认识是独立于实践之外的 C、实践在认识过程中具有决定作用 D、人的一切知识都是从直接经验中获得的 参考答案: C 本题解…...
蓝桥杯 冶炼金属
原题目链接 🔧 冶炼金属转换率推测题解 📜 原题描述 小蓝有一个神奇的炉子用于将普通金属 O O O 冶炼成为一种特殊金属 X X X。这个炉子有一个属性叫转换率 V V V,是一个正整数,表示每 V V V 个普通金属 O O O 可以冶炼出 …...
网站指纹识别
网站指纹识别 网站的最基本组成:服务器(操作系统)、中间件(web容器)、脚本语言、数据厍 为什么要了解这些?举个例子:发现了一个文件读取漏洞,我们需要读/etc/passwd,如…...
AGain DB和倍数增益的关系
我在设置一款索尼CMOS芯片时,Again增益0db变化为6DB,画面的变化只有2倍DN的增益,比如10变为20。 这与dB和线性增益的关系以及传感器处理流程有关。以下是具体原因分析: 1. dB与线性增益的换算关系 6dB对应的理论线性增益应为&…...
