当前位置: 首页 > news >正文

面试热点题:回溯算法之组合 组合与组合总和 III

什么是回溯算法?

回溯算法也可以叫回溯搜索算法,回溯是递归的"副产品",回溯的本质是穷举,然后选出我们需要的数据,回溯本身不是特别高效的算法,但我们可以通过"剪枝"来优化它。

理解回溯算法

回溯算法的解决可以模拟成树的结构,因为回溯法解决的是在集合中递归搜索子集的过程,集合的大小构成树的宽度,递归的深度构成树的深度

回溯算法模板

  1. 确定回溯算法的返回值与参数(一般先写逻辑,然后需要什么参数,就增加什么参数)
  2. 确定回溯函数的终止条件
  3. 确定回溯搜查的遍历过程
void BackTracking(参数)
{if (终止条件){处理结果return;}for (选择:本层集合中的元素(树中节点孩子的数量就是集合的大小)){处理节点BackTracking(路径,选择列表);//递归回溯,撤销处理结果}
}

组合

问题:
给定两个整数 n 和 k,返回范围 [1, n] 中所有可能的 k 个数的组合。
你可以按 任何顺序 返回答案。
来源:力扣(LeetCode)组合

在这里插入图片描述
思路一:这种题目我们一眼就能想到使用for循环套循环比如 k==2时

	int n = 4;for (int i = 1; i <= n; i++){for (int j = i + 1; j <= n; j++){//处理结果}}

但是如果k越来越大,我们套用的循环也会越来越多,这种暴力解法无疑是不现实的。

思路二:我们在前面说过,可以使用树的结构来模拟回溯递归的过程:
比如n=4 k=2
在这里插入图片描述
树的初始集合是[1,2,3,4],从左向右取,取过的数不再取,每次从集合中选取元素,可选择的范围逐渐缩小。有图可以发现,n相当于树的宽度,而k相当于树的深度。我们再由模板来写出最终代码:

class Solution {
public:vector<vector<int>> arr;//存放符合条件的集合vector<int> _arr;//用来存放符合条件的单一数据void BackTracking(int n, int k, int begin){if (_arr.size() == k)//递归终止条件{arr.push_back(_arr);//单一数据存放至总集合里return;}for (int i = begin; i <= n; i++)//控制树的横向遍历{_arr.push_back(i);//处理节点BackTracking(n, k, i + 1);//递归,控制树的纵向遍历,即深度_arr.pop_back();//回溯,撤销处理的节点}}vector<vector<int>> combine(int n, int k) {BackTracking(n, k, 1);return arr;}
};

剪枝优化

如果出现下面情况:
n=4 k=4
那么在第一层for循环中,从元素2开始的遍历都没有意义,因为满足k的数量不够了,所以有图可知,打叉的地方都可以优化掉
在这里插入图片描述
优化过程:

  1. 已经选择的元素个数:_arr.size()
  2. 还需要的元素个数:k - _arr.size()

优化后的代码:

class Solution {
public:vector<int> _arr;vector<vector<int>> arr;void BackTracking(int n, int k, int begin){if (_arr.size() == k){arr.push_back(_arr);return;}for (int i = begin; i <= n-(k-_arr.size())+1; i++)//剪枝优化{_arr.push_back(i);BackTracking(n, k, i + 1);_arr.pop_back();}}vector<vector<int>> combine(int n, int k) {BackTracking(n, k, 1);return arr;}
};

组合总和 III

问题:
找出所有相加之和为 n 的 k 个数的组合,且满足下列条件:

  • 只使用数字1到9
  • 每个数字 最多使用一次

返回 所有可能的有效组合的列表 。该列表不能包含相同的组合两次,组合可以以任何顺序返回。
来源:力扣(LeetCode)组合总和 III

在这里插入图片描述

思路:这个题相对于上一个题来说,就是k为树的深度,而集合固定为1到9,也就是树的宽度为9
比如:k=2 只取两个数
在这里插入图片描述
代码:

class Solution {
public:vector<vector<int>> arr;vector<int> _arr;void BackTracking(int k,int n,int begin,int sum){if(_arr.size()==k)//终止条件{if(sum==n)//满足题意{arr.push_back(_arr);}return;}for(int i=begin;i<=9;i++)//横向遍历{sum+=i;//收集元素总和_arr.push_back(i);//收集元素BackTracking(k,n,i+1,sum);//递归,纵向遍历sum-=i;//回溯_arr.pop_back();//回溯}}vector<vector<int>> combinationSum3(int k, int n) {BackTracking(k,n,1,0);return arr;}
};

剪枝优化

如果我们选择的元素总和已经大于n,那么我们再往后遍历的总和肯定也大于n,就没有继续遍历下去的意义了。元素个数方面,同样与上一题一样能继续优化。
在这里插入图片描述
优化后:

class Solution {
public:vector<vector<int>> arr;vector<int> _arr;void BackTracking(int k,int n,int begin,int sum){if(sum>n)//剪枝条件{return;}if(_arr.size()==k){if(sum==n){arr.push_back(_arr);}return;}for(int i=begin;i<=9-(k-_arr.size())+1;i++)//元素个数的优化{sum+=i;_arr.push_back(i);BackTracking(k,n,i+1,sum);sum-=i;_arr.pop_back();}}vector<vector<int>> combinationSum3(int k, int n) {BackTracking(k,n,1,0);return arr;}
};

相关文章:

面试热点题:回溯算法之组合 组合与组合总和 III

什么是回溯算法&#xff1f; 回溯算法也可以叫回溯搜索算法&#xff0c;回溯是递归的"副产品",回溯的本质是穷举&#xff0c;然后选出我们需要的数据&#xff0c;回溯本身不是特别高效的算法&#xff0c;但我们可以通过"剪枝"来优化它。 理解回溯算法 回溯…...

java面试-jvm

JVM JVM 是 java 虚拟机&#xff0c;简单来说就是能执行标准 java 字节码的虚拟计算机 JVM 是如何工作的 首先程序在执行之前先要把 Java 代码&#xff08;.java&#xff09;转换成字节码&#xff08;.class&#xff09;&#xff0c;JVM 通过类加载器&#xff08;ClassLoade…...

vscode下载与使用

1.vscode下载 官网下载地址&#xff1a;Download Visual Studio Code - Mac, Linux, Windows下载太慢&#xff0c;推荐文章&#xff1a;解决VsCode下载慢问题_vscode下载太慢_迷小圈的博客-CSDN博客下载太慢&#xff0c;推荐下载链接&#xff1a;https://vscode.cdn.azure.cn/s…...

人员摔倒识别预警算法 opencv

人员摔倒识别预警算法通过opencv网络模型技术&#xff0c;人员摔倒识别预警算法能够智能检测现场画面中人员有没有摔倒&#xff0c;无需人为干预可以立刻抓拍告警。OpenCV的全称是Open Source Computer Vision Library&#xff0c;是一个跨平台的计算机视觉处理开源软件库&…...

华为OD机试题 - 火星文计算(JavaScript)| 机考必刷

更多题库,搜索引擎搜 梦想橡皮擦华为OD 👑👑👑 更多华为OD题库,搜 梦想橡皮擦 华为OD 👑👑👑 更多华为机考题库,搜 梦想橡皮擦华为OD 👑👑👑 华为OD机试题 最近更新的博客使用说明本篇题解:火星文计算题目输入输出示例一输入输出说明Code解题思路版权说明…...

AI人工智能 - 初探

1.应用场景 主要用于了解和系统学习AI&#xff0c;从而可以在工作生活中利用AI做一些事。 2.学习/操作 1.文档阅读 下面的内容来自于与chatGPT的对话 2.整理输出 介绍AI 人工智能&#xff08;Artificial Intelligence&#xff0c;简称AI&#xff09;是计算机科学中的一个分支&…...

Spring-AOP工作流程

Spring-AOP工作流程 3&#xff0c;AOP工作流程 3.1 AOP工作流程 由于AOP是基于Spring容器管理的bean做的增强&#xff0c;所以整个工作过程需要从Spring加载bean说起: 流程1:Spring容器启动 容器启动就需要去加载bean,哪些类需要被加载呢?需要被增强的类&#xff0c;如:B…...

C51---串口发送指令,控制LED灯亮灭

1.Code: #include "reg52.h" #include "intrins.h" sfr AUXR 0x8E; sbit D5 P3^7; void UartInit(void) //9600bps11.0592MHz { //PCON & 0x7F; //波特率不倍速 AUXR 0x01; SCON 0x50; //8位数据,可变波…...

【Wiki】XWiki数据备份

XWiki为主题使用java开发的开源wiki&#xff0c;官网地址如下&#xff1a; https://www.xwiki.org/xwiki/bin/view/Main/ 目录1、 XWiki升级数据备份1.1、 获取XWiki配置的数据库与持久化目录信息1.2 备份数据库信息1.3 备份持久化目录2、XWiki数据迁移如果一个知识库不能确保数…...

ctk框架开发Qt插件应用示例工程

目录 前言 约定 插件工程pluginApp: 主启动工程StartApp: 效果演示 结语...

spring5源码篇(4)——beanFactoryPostProcessor执行/注解bean的装配

spring-framework 版本&#xff1a;v5.3.19 前面研究了beanDefinition的注册&#xff0c;但也仅仅是注册这一动作。那么在spring容器启动的过程中&#xff0c;是何时/如何装配的&#xff1f;以及装配的bean是如何注入的&#xff1f; &#xff08;考虑到xml方式基本不用了以及篇…...

masstransit的message几个高级用法

1&#xff09;问题&#xff0c;Class MessageA 基类&#xff0c;Class MessageB继承自MessageA&#xff1b; 用bus.Publish方法本想把有些消息只发给B队列&#xff0c;结果由于其继承关系A队列也获得了消息&#xff1b; 解决方法用send&#xff0c; Uri uri new Uri(RabbitM…...

漏洞分析丨cve-2012-0003

作者:黑蛋一、漏洞简介这次漏洞属于堆溢出漏洞&#xff0c;他是MIDI文件中存在的堆溢出漏洞。在IE6&#xff0c;IE7&#xff0c;IE8中都存在这个漏洞。而这个漏洞是Winmm.dll中产生的。二、漏洞环境虚拟机调试工具目标软件辅助工具XP-SP3、KaliOD、IDAIE6Windbg组件gflags.exe三…...

rm命令——删除文件或目录

rm命令是英文单词remove的缩写&#xff0c;主要功能是删除文件或目录。 因为删除文件是一个破坏性动作&#xff0c;因此&#xff0c;在使用时需要格外小心&#xff0c;在执行之前一定要再三确认删除的是哪个目录中的什么文件。 rm命令的语法格式如下&#xff1a; rm [选项] …...

【零基础入门学习Python---Python的基本语法使用】

一.Python基本语法使用 Python是一种易学且功能强大的编程语言,具有简洁的语法和广泛的应用领域。在本文中,我们将介绍Python的基本语法使用,以帮助初学者快速入门Python编程。 1.1 注释 Python 支持两种类型的注释:单行注释和多行注释。 单行注释:以 # 符号开头,从 # …...

数据仓库相关概念的解释

数据仓库相关概念的解释 文章目录数据仓库相关概念的解释1 ETL是什么&#xff1f;ETL体系结构2 数据流向何为数仓DW3 ODS 是什么&#xff1f;4 数据仓库层DWDWD 明细层DWD 轻度汇总层&#xff08;MID或DWB&#xff0c;data warehouse basis&#xff09;DWS 主题层&#xff08;D…...

1/4车、1/2车、整车悬架模糊PID控制仿真合集

目录 前言 1. 1/4悬架系统 1.1数学模型 1.2仿真分析 2. 1/2悬架系统 2.1数学模型 2.2仿真模型 2.3仿真分析 3. 整车悬架系统 3.1数学模型 3.2仿真分析 4.总结 前言 前面几篇文章介绍了LQR、SkyHook、H2/H∞、PID控制&#xff0c;接下来会继续介绍滑模、反步法、M…...

Linux性能补丁升级,避免不必要的跨核Wake-Up

导读一个由英特尔发起的、旨在改进Linux内核公平调度程序代码的补丁系列&#xff0c;也看到了来自AMD工程师和其他利益相关者的测试/反馈&#xff0c;并继续进行改进。这个补丁系列的重点是避免在不必要的情况下发生过多的跨核唤醒(Cross-CPU Wake-up)。这样一来&#xff0c;这…...

Spring Cloud Alibaba全家桶(六)——微服务组件Sentinel介绍与使用

前言 本文小新为大家带来 微服务组件Sentinel介绍与使用 相关知识&#xff0c;具体内容包括分布式系统存在的问题&#xff0c;分布式系统问题的解决方案&#xff0c;Sentinel介绍&#xff0c;Sentinel快速开始&#xff08;包括&#xff1a;API实现Sentinel资源保护&#xff0c;…...

拼多多2021笔试真题集 -- 3. 多多的求和计算

多多的求和计算 多多路上从左到右有N棵树&#xff08;编号1&#xff5e;N&#xff09;&#xff0c;其中第i个颗树有和谐值Ai。 多多鸡认为&#xff0c;如果一段连续的树&#xff0c;它们的和谐值之和可以被M整除&#xff0c;那么这个区间整体看起来就是和谐的。 现在多多鸡想请…...

DP算法:动态规划算法

步骤&#xff08;1&#xff09;确定初始状态&#xff08;2&#xff09;确定转移矩阵&#xff0c;得到每个阶段的状态&#xff0c;由上一阶段推到出来&#xff08;3&#xff09;确定边界条件。例题蓝桥杯——印章&#xff08;python实现&#xff09;使用dp记录状态&#xff0c;d…...

一三四——一六七

一三四、JavaScript——_DOM简介 MDNq前端参考文档&#xff1a;DOM 概述 - Web API 接口参考 | MDN (mozilla.org) 一三五、JavaScript——HelloWorld <!DOCTYPE html> <html lang"en"> <head><meta charset"UTF-8"><meta h…...

day29_JS

今日内容 上课同步视频:CuteN饕餮的个人空间_哔哩哔哩_bilibili 同步笔记沐沐霸的博客_CSDN博客-Java2301 零、 复习昨日 一、事件 二、DOM操作 三、案例 零、 复习昨日 js 脚本语言,弱类型 引入方案: 3种 js的内容: 语法dombom 语法 变量 var 数据类型 引用类型 - 对象,J…...

【HTTP协议与Web服务器】

HTTP协议与Web服务器浏览器与服务器通信过程HTTP的请求报头HTTP请求报头结构HTTP的请求方法HTTP应答报头HTTP应答报头结构应答状态web服务器的c语言实现浏览器与服务器通信过程 浏览器与Web服务器再应用层通信使用的是HTTP协议&#xff0c;而HTTP协议在传输层使用的是TCP协议。…...

Idea+maven+spring-cloud项目搭建系列--12 整合grpc

前言&#xff1a; grpc 是geogle 开源的rpc 通信框架&#xff0c;通过定义proto生成通信存根&#xff0c;像本地调用服务一样&#xff0c;进行远程服务的调用&#xff1b; 1 消费端服务提供&#xff1a; 1.1 引入grpc 和 protobuf <!-- RPC --> <!-- RPC 服务调用 …...

Revit开洞问题:结构专业开洞口剖面显示及一键开洞

一、Revit中关于结构专业开洞口剖面显示问题 Revit作业的时候&#xff0c;我们不仅只为了一个最后的三维立体模型,我们需要的是一个符合国家以及本院制图标准的一个出图样式,这时候就会出现各种各样的显示问题&#xff0c;本期就一个结构专业开洞显示问题&#xff0c;跟大家一起…...

0107连通分量-无向图-数据结构和算法(Java)

文章目录1 API2 代码实现和分析测试后记1 API 深度优先搜索下一个直接应用就是找出一幅图中的连通分量,定义如下API。 public class CCCC(Graph g)预处理构造函数booleanconnected(int v, int w)v和w连通吗intcount()连通分量数intid(int v)v所在的连通分量标识符(0~count()-…...

[学习笔记]黑马程序员python教程

文章目录思维导图Python基础知识图谱面向对象SQL入门和实战Python高阶技巧第一阶段第九章&#xff1a;Python异常、模块与包1.9.1异常的捕获1.9.1.1 为什么要捕获异常1.9.1.2 捕获常规的异常1.9.1.3 捕获指定的异常1.9.1.4 捕获多个异常1.9.1.5 捕获全部异常1.9.1.6 异常的else…...

如何配置用于构建 FastReport Online Designer 的 API ?

FastReport Online Designer 是一个跨平台的报表设计器&#xff0c;允许通过任何平台的移动设备创建和编辑报表。今天我们就一起来看看在2023版中新增和改进的功能有哪些&#xff0c;点击下方可以获取最新版免费试用哦&#xff01; FastReport Onlin Designe最新版试用https:/…...

【嵌入式Linux内核驱动】02_字符设备驱动

字符设备驱动 〇、基本知识 设备驱动分类 &#xff08;按共性分类方便管理&#xff09; 1.字符设备驱动 字符设备指那些必须按字节流传输&#xff0c;以串行顺序依次进行访问的设备。它们是我们日常最常见的驱动了&#xff0c;像鼠标、键盘、打印机、触摸屏&#xff0c;还有…...

体育新闻网站源码/百度惠生活怎么做推广

写在前面 Md2site是基于Omi的一款Markdown转网站工具&#xff0c;使用简单&#xff0c;生成的文件轻巧&#xff0c;功能强大。当我们想把一堆markdown文档转成网站时&#xff0c;你可能有许多选择&#xff0c;倘若选择 md2site &#xff0c;你一定会爱上她。 官网&#xff1a;a…...

网站开发大概要多少钱/品牌营销推广方案怎么做

1、代码风格1.1、缩进与换行【强制】使用webstorm 编辑器自带的格式化功能&#xff08;alt command L&#xff09;格式化代码&#xff0c;层级结构使用tab(4个空格)区分开。【建议】每行代码不得超出编辑器边界线&#xff0c;过长的代码不容易阅读与维护1.2、命名【强制】标签…...

苏州地区网站制作/青岛百度seo排名

离散均匀分布 n 个值中的每一个具有相等的概率 1/ n 截图来源&#xff1a;Discrete Uniform Distribution 例子&#xff1a; 投掷一个骰子6个值中每个值出现的概率为 1/61/61/6 投掷两个骰子出现的两值之和&#xff0c;结果分布不再均匀&#xff0c;因为并非所有和的概率都相等…...

五八同城客服网站怎么做/seo优化自动点击软件

记者走访了一家公司。这家公司有两种人&#xff1a;一种只说真话的老实人&#xff0c;一种只说假话的骗子。午餐时&#xff0c;全公司的人都围坐在餐桌旁&#xff0c;记者向公司的每个人都问了一个同样的问题&#xff1a;“你左边的那个人是不是老实人&#xff1f;”每个人都回…...

自动水wordpress/怎么在网络上推广

CentOS6.3641.下载软件包wget http://seafile.googlecode.com/files/seafile-server_2.0.4_x86-64.tar.gz2.创建目录解压到此目录mkdir tonglou tar zxvf seafile-server_2.0.4_x86-64.tar.gz -C tonglou cd tonglou/seafile-server-2.0.43.配置初始化前的准备yum -y install …...

wordpress被扫描/南宁哪里有seo推广厂家

多文档界面(MDI) 文章目录 多文档界面(MDI)1、子窗口创建2、主窗口创建3、运行结果多文档界面(Multi Document Interface,MDI)是一种应用程序界面管理方法。MDI应用程序一般由一个主窗口和多个子窗口组成,这些子窗口在主窗口里显示,并共享主窗口的菜单栏,工具栏。在MDI应用…...