面试热点题:回溯算法之组合 组合与组合总和 III
什么是回溯算法?
回溯算法也可以叫回溯搜索算法,回溯是递归的"副产品",回溯的本质是穷举,然后选出我们需要的数据,回溯本身不是特别高效的算法,但我们可以通过"剪枝"来优化它。
理解回溯算法
回溯算法的解决可以模拟成树的结构,因为回溯法解决的是在集合中递归搜索子集的过程,集合的大小构成树的宽度,递归的深度构成树的深度。
回溯算法模板
- 确定回溯算法的返回值与参数(一般先写逻辑,然后需要什么参数,就增加什么参数)
- 确定回溯函数的终止条件
- 确定回溯搜查的遍历过程
void BackTracking(参数)
{if (终止条件){处理结果return;}for (选择:本层集合中的元素(树中节点孩子的数量就是集合的大小)){处理节点BackTracking(路径,选择列表);//递归回溯,撤销处理结果}
}
组合
问题:
给定两个整数 n 和 k,返回范围 [1, n] 中所有可能的 k 个数的组合。
你可以按 任何顺序 返回答案。
来源:力扣(LeetCode)组合

思路一:这种题目我们一眼就能想到使用for循环套循环比如 k==2时
int n = 4;for (int i = 1; i <= n; i++){for (int j = i + 1; j <= n; j++){//处理结果}}
但是如果k越来越大,我们套用的循环也会越来越多,这种暴力解法无疑是不现实的。
思路二:我们在前面说过,可以使用树的结构来模拟回溯递归的过程:
比如n=4 k=2

树的初始集合是[1,2,3,4],从左向右取,取过的数不再取,每次从集合中选取元素,可选择的范围逐渐缩小。有图可以发现,n相当于树的宽度,而k相当于树的深度。我们再由模板来写出最终代码:
class Solution {
public:vector<vector<int>> arr;//存放符合条件的集合vector<int> _arr;//用来存放符合条件的单一数据void BackTracking(int n, int k, int begin){if (_arr.size() == k)//递归终止条件{arr.push_back(_arr);//单一数据存放至总集合里return;}for (int i = begin; i <= n; i++)//控制树的横向遍历{_arr.push_back(i);//处理节点BackTracking(n, k, i + 1);//递归,控制树的纵向遍历,即深度_arr.pop_back();//回溯,撤销处理的节点}}vector<vector<int>> combine(int n, int k) {BackTracking(n, k, 1);return arr;}
};
剪枝优化
如果出现下面情况:
n=4 k=4
那么在第一层for循环中,从元素2开始的遍历都没有意义,因为满足k的数量不够了,所以有图可知,打叉的地方都可以优化掉

优化过程:
- 已经选择的元素个数:_arr.size()
- 还需要的元素个数:k - _arr.size()
优化后的代码:
class Solution {
public:vector<int> _arr;vector<vector<int>> arr;void BackTracking(int n, int k, int begin){if (_arr.size() == k){arr.push_back(_arr);return;}for (int i = begin; i <= n-(k-_arr.size())+1; i++)//剪枝优化{_arr.push_back(i);BackTracking(n, k, i + 1);_arr.pop_back();}}vector<vector<int>> combine(int n, int k) {BackTracking(n, k, 1);return arr;}
};
组合总和 III
问题:
找出所有相加之和为 n 的 k 个数的组合,且满足下列条件:
- 只使用数字1到9
- 每个数字 最多使用一次
返回 所有可能的有效组合的列表 。该列表不能包含相同的组合两次,组合可以以任何顺序返回。
来源:力扣(LeetCode)组合总和 III

思路:这个题相对于上一个题来说,就是k为树的深度,而集合固定为1到9,也就是树的宽度为9
比如:k=2 只取两个数

代码:
class Solution {
public:vector<vector<int>> arr;vector<int> _arr;void BackTracking(int k,int n,int begin,int sum){if(_arr.size()==k)//终止条件{if(sum==n)//满足题意{arr.push_back(_arr);}return;}for(int i=begin;i<=9;i++)//横向遍历{sum+=i;//收集元素总和_arr.push_back(i);//收集元素BackTracking(k,n,i+1,sum);//递归,纵向遍历sum-=i;//回溯_arr.pop_back();//回溯}}vector<vector<int>> combinationSum3(int k, int n) {BackTracking(k,n,1,0);return arr;}
};
剪枝优化
如果我们选择的元素总和已经大于n,那么我们再往后遍历的总和肯定也大于n,就没有继续遍历下去的意义了。元素个数方面,同样与上一题一样能继续优化。

优化后:
class Solution {
public:vector<vector<int>> arr;vector<int> _arr;void BackTracking(int k,int n,int begin,int sum){if(sum>n)//剪枝条件{return;}if(_arr.size()==k){if(sum==n){arr.push_back(_arr);}return;}for(int i=begin;i<=9-(k-_arr.size())+1;i++)//元素个数的优化{sum+=i;_arr.push_back(i);BackTracking(k,n,i+1,sum);sum-=i;_arr.pop_back();}}vector<vector<int>> combinationSum3(int k, int n) {BackTracking(k,n,1,0);return arr;}
};
相关文章:
面试热点题:回溯算法之组合 组合与组合总和 III
什么是回溯算法? 回溯算法也可以叫回溯搜索算法,回溯是递归的"副产品",回溯的本质是穷举,然后选出我们需要的数据,回溯本身不是特别高效的算法,但我们可以通过"剪枝"来优化它。 理解回溯算法 回溯…...
java面试-jvm
JVM JVM 是 java 虚拟机,简单来说就是能执行标准 java 字节码的虚拟计算机 JVM 是如何工作的 首先程序在执行之前先要把 Java 代码(.java)转换成字节码(.class),JVM 通过类加载器(ClassLoade…...
vscode下载与使用
1.vscode下载 官网下载地址:Download Visual Studio Code - Mac, Linux, Windows下载太慢,推荐文章:解决VsCode下载慢问题_vscode下载太慢_迷小圈的博客-CSDN博客下载太慢,推荐下载链接:https://vscode.cdn.azure.cn/s…...
人员摔倒识别预警算法 opencv
人员摔倒识别预警算法通过opencv网络模型技术,人员摔倒识别预警算法能够智能检测现场画面中人员有没有摔倒,无需人为干预可以立刻抓拍告警。OpenCV的全称是Open Source Computer Vision Library,是一个跨平台的计算机视觉处理开源软件库&…...
华为OD机试题 - 火星文计算(JavaScript)| 机考必刷
更多题库,搜索引擎搜 梦想橡皮擦华为OD 👑👑👑 更多华为OD题库,搜 梦想橡皮擦 华为OD 👑👑👑 更多华为机考题库,搜 梦想橡皮擦华为OD 👑👑👑 华为OD机试题 最近更新的博客使用说明本篇题解:火星文计算题目输入输出示例一输入输出说明Code解题思路版权说明…...
AI人工智能 - 初探
1.应用场景 主要用于了解和系统学习AI,从而可以在工作生活中利用AI做一些事。 2.学习/操作 1.文档阅读 下面的内容来自于与chatGPT的对话 2.整理输出 介绍AI 人工智能(Artificial Intelligence,简称AI)是计算机科学中的一个分支&…...
Spring-AOP工作流程
Spring-AOP工作流程 3,AOP工作流程 3.1 AOP工作流程 由于AOP是基于Spring容器管理的bean做的增强,所以整个工作过程需要从Spring加载bean说起: 流程1:Spring容器启动 容器启动就需要去加载bean,哪些类需要被加载呢?需要被增强的类,如:B…...
C51---串口发送指令,控制LED灯亮灭
1.Code: #include "reg52.h" #include "intrins.h" sfr AUXR 0x8E; sbit D5 P3^7; void UartInit(void) //9600bps11.0592MHz { //PCON & 0x7F; //波特率不倍速 AUXR 0x01; SCON 0x50; //8位数据,可变波…...
【Wiki】XWiki数据备份
XWiki为主题使用java开发的开源wiki,官网地址如下: https://www.xwiki.org/xwiki/bin/view/Main/ 目录1、 XWiki升级数据备份1.1、 获取XWiki配置的数据库与持久化目录信息1.2 备份数据库信息1.3 备份持久化目录2、XWiki数据迁移如果一个知识库不能确保数…...
ctk框架开发Qt插件应用示例工程
目录 前言 约定 插件工程pluginApp: 主启动工程StartApp: 效果演示 结语...
spring5源码篇(4)——beanFactoryPostProcessor执行/注解bean的装配
spring-framework 版本:v5.3.19 前面研究了beanDefinition的注册,但也仅仅是注册这一动作。那么在spring容器启动的过程中,是何时/如何装配的?以及装配的bean是如何注入的? (考虑到xml方式基本不用了以及篇…...
masstransit的message几个高级用法
1)问题,Class MessageA 基类,Class MessageB继承自MessageA; 用bus.Publish方法本想把有些消息只发给B队列,结果由于其继承关系A队列也获得了消息; 解决方法用send, Uri uri new Uri(RabbitM…...
漏洞分析丨cve-2012-0003
作者:黑蛋一、漏洞简介这次漏洞属于堆溢出漏洞,他是MIDI文件中存在的堆溢出漏洞。在IE6,IE7,IE8中都存在这个漏洞。而这个漏洞是Winmm.dll中产生的。二、漏洞环境虚拟机调试工具目标软件辅助工具XP-SP3、KaliOD、IDAIE6Windbg组件gflags.exe三…...
rm命令——删除文件或目录
rm命令是英文单词remove的缩写,主要功能是删除文件或目录。 因为删除文件是一个破坏性动作,因此,在使用时需要格外小心,在执行之前一定要再三确认删除的是哪个目录中的什么文件。 rm命令的语法格式如下: rm [选项] …...
【零基础入门学习Python---Python的基本语法使用】
一.Python基本语法使用 Python是一种易学且功能强大的编程语言,具有简洁的语法和广泛的应用领域。在本文中,我们将介绍Python的基本语法使用,以帮助初学者快速入门Python编程。 1.1 注释 Python 支持两种类型的注释:单行注释和多行注释。 单行注释:以 # 符号开头,从 # …...
数据仓库相关概念的解释
数据仓库相关概念的解释 文章目录数据仓库相关概念的解释1 ETL是什么?ETL体系结构2 数据流向何为数仓DW3 ODS 是什么?4 数据仓库层DWDWD 明细层DWD 轻度汇总层(MID或DWB,data warehouse basis)DWS 主题层(D…...
1/4车、1/2车、整车悬架模糊PID控制仿真合集
目录 前言 1. 1/4悬架系统 1.1数学模型 1.2仿真分析 2. 1/2悬架系统 2.1数学模型 2.2仿真模型 2.3仿真分析 3. 整车悬架系统 3.1数学模型 3.2仿真分析 4.总结 前言 前面几篇文章介绍了LQR、SkyHook、H2/H∞、PID控制,接下来会继续介绍滑模、反步法、M…...
Linux性能补丁升级,避免不必要的跨核Wake-Up
导读一个由英特尔发起的、旨在改进Linux内核公平调度程序代码的补丁系列,也看到了来自AMD工程师和其他利益相关者的测试/反馈,并继续进行改进。这个补丁系列的重点是避免在不必要的情况下发生过多的跨核唤醒(Cross-CPU Wake-up)。这样一来,这…...
Spring Cloud Alibaba全家桶(六)——微服务组件Sentinel介绍与使用
前言 本文小新为大家带来 微服务组件Sentinel介绍与使用 相关知识,具体内容包括分布式系统存在的问题,分布式系统问题的解决方案,Sentinel介绍,Sentinel快速开始(包括:API实现Sentinel资源保护,…...
拼多多2021笔试真题集 -- 3. 多多的求和计算
多多的求和计算 多多路上从左到右有N棵树(编号1~N),其中第i个颗树有和谐值Ai。 多多鸡认为,如果一段连续的树,它们的和谐值之和可以被M整除,那么这个区间整体看起来就是和谐的。 现在多多鸡想请…...
<6>-MySQL表的增删查改
目录 一,create(创建表) 二,retrieve(查询表) 1,select列 2,where条件 三,update(更新表) 四,delete(删除表…...
Java如何权衡是使用无序的数组还是有序的数组
在 Java 中,选择有序数组还是无序数组取决于具体场景的性能需求与操作特点。以下是关键权衡因素及决策指南: ⚖️ 核心权衡维度 维度有序数组无序数组查询性能二分查找 O(log n) ✅线性扫描 O(n) ❌插入/删除需移位维护顺序 O(n) ❌直接操作尾部 O(1) ✅内存开销与无序数组相…...
AtCoder 第409场初级竞赛 A~E题解
A Conflict 【题目链接】 原题链接:A - Conflict 【考点】 枚举 【题目大意】 找到是否有两人都想要的物品。 【解析】 遍历两端字符串,只有在同时为 o 时输出 Yes 并结束程序,否则输出 No。 【难度】 GESP三级 【代码参考】 #i…...
Mac下Android Studio扫描根目录卡死问题记录
环境信息 操作系统: macOS 15.5 (Apple M2芯片)Android Studio版本: Meerkat Feature Drop | 2024.3.2 Patch 1 (Build #AI-243.26053.27.2432.13536105, 2025年5月22日构建) 问题现象 在项目开发过程中,提示一个依赖外部头文件的cpp源文件需要同步,点…...
Java + Spring Boot + Mybatis 实现批量插入
在 Java 中使用 Spring Boot 和 MyBatis 实现批量插入可以通过以下步骤完成。这里提供两种常用方法:使用 MyBatis 的 <foreach> 标签和批处理模式(ExecutorType.BATCH)。 方法一:使用 XML 的 <foreach> 标签ÿ…...
AGain DB和倍数增益的关系
我在设置一款索尼CMOS芯片时,Again增益0db变化为6DB,画面的变化只有2倍DN的增益,比如10变为20。 这与dB和线性增益的关系以及传感器处理流程有关。以下是具体原因分析: 1. dB与线性增益的换算关系 6dB对应的理论线性增益应为&…...
七、数据库的完整性
七、数据库的完整性 主要内容 7.1 数据库的完整性概述 7.2 实体完整性 7.3 参照完整性 7.4 用户定义的完整性 7.5 触发器 7.6 SQL Server中数据库完整性的实现 7.7 小结 7.1 数据库的完整性概述 数据库完整性的含义 正确性 指数据的合法性 有效性 指数据是否属于所定…...
GitHub 趋势日报 (2025年06月06日)
📊 由 TrendForge 系统生成 | 🌐 https://trendforge.devlive.org/ 🌐 本日报中的项目描述已自动翻译为中文 📈 今日获星趋势图 今日获星趋势图 590 cognee 551 onlook 399 project-based-learning 348 build-your-own-x 320 ne…...
NPOI操作EXCEL文件 ——CAD C# 二次开发
缺点:dll.版本容易加载错误。CAD加载插件时,没有加载所有类库。插件运行过程中用到某个类库,会从CAD的安装目录找,找不到就报错了。 【方案2】让CAD在加载过程中把类库加载到内存 【方案3】是发现缺少了哪个库,就用插件程序加载进…...
HubSpot推出与ChatGPT的深度集成引发兴奋与担忧
上周三,HubSpot宣布已构建与ChatGPT的深度集成,这一消息在HubSpot用户和营销技术观察者中引发了极大的兴奋,但同时也存在一些关于数据安全的担忧。 许多网络声音声称,这对SaaS应用程序和人工智能而言是一场范式转变。 但向任何技…...
