Python MongoDB 基本操作
本文内容主要为使用Python 对Mongodb数据库的一些基本操作整理。
目录
安装类库
操作实例
引用类库
连接服务器
连接数据库
添加文档
添加单条
批量添加
查询文档
查询所有文档
查询部分文档
使用id查询
统计查询
排序
分页查询
更新文档
update_one方法
update_many方法
删除文档
delete_one方法
delete_many方法
总结
安装类库
打开命令行执行以下命令:
pip install pymongo
安装过程如下:

操作实例
引用类库
首先需要引入mongodb的操作类库,示例如下:
from pymongo import MongoClient
连接服务器
conn = MongoClient('localhost', 27017)
连接数据库
db = conn.mydb
添加文档
添加单条
使用insert_one()方法,添加一个学生记录。
示例如下:
from pymongo import MongoClientconn = MongoClient('localhost', 27017)db = conn.mydb
student = db.student
student.insert_one({'name': 'zhangsan', 'age': 20, 'gender': 1, 'address': '北京海淀区', 'isDel': 0})# 关闭
conn.close()
批量添加
使用insert_many()方法,添加多个学生记录。
示例如下:
from pymongo import MongoClientconn = MongoClient('localhost', 27017)db = conn.mydb
collection = db.student
# 批量
collection.insert_many([{'name': '李四', 'age': 18, 'gender': 0, 'address': '北京海淀区', 'isDel': 0},{'name': '王五', 'age': 21, 'gender': 1, 'address': '北京昌平区', 'isDel': 0},{'name': '赵六', 'age': 19, 'gender': 0, 'address': '北京朝阳区', 'isDel': 0}
])# 关闭
conn.close()
查询文档
使用查询方法,查询刚才插入的数据。根据查询条件不同分为以下类型。
查询所有文档
没有查询条件即查询集合中所有记录。
示例如下:
from pymongo import MongoClientconn = MongoClient('localhost', 27017)collection = conn.mydb.studentres = collection.find()
for row in res:print(row)print(type(row))conn.close()
执行结果:

查询部分文档
通过设置查询条件为小于20岁的学生,来查询符合条件的部分数据。
示例如下:
res = collection.find({'age': {'$gt': 20}})
for row in res:print(row)print(type(row))
执行结果:

使用id查询
使用id查询与mysql不同,需要使用id生成器来转化id字符串后在进行查询。
示例如下:
from bson.objectid import ObjectId
info = collection.find({'_id':ObjectId('666bbb5b8d4817f169319d61')})
print(info)
print(type(info))
print(info[0])
打印为对象类型,可获取其第一个元素。
执行结果:

统计查询
对符合查询条件的记录进行数量统计。
示例如下:
res = collection.count_documents({'age': {'$gte': 20}})
print(res)
执行结果:
3
排序
默认升序 pymongo.DESCENDING倒序。
示例如下:
import pymongo
from pymongo import MongoClientconn = MongoClient('localhost', 27017)collection = conn.mydb.student# 默认升序 pymongo.DESCENDING倒序
res = collection.find().sort('age', pymongo.DESCENDING)
for row in res:print(row)
分页查询
通过skip()和limit()方法实现分页。
示例如下:
from pymongo import MongoClientconn = MongoClient('localhost', 27017)collection = conn.mydb.studentres = collection.find().skip(2).limit(5)
for row in res:print(row)
更新文档
update_one方法
只会修改符合条件的第一条记录。
示例如下:
info = collection.update_one({'name': 'zhangsan'}, {'$set': {'name': '李雷'}})
print(info)
执行结果:
# 修改成功
# UpdateResult({'n': 1, 'nModified': 1, 'ok': 1.0, 'updatedExisting': True}, acknowledged=True)
# 没有找到符合记录,未修改
# UpdateResult({'n': 0, 'nModified': 0, 'ok': 1.0, 'updatedExisting': False}, acknowledged=True)
update_many方法
会修改所有符合条件的记录。
示例如下:
info = collection.update_many({'name': '李四'}, {'$set': {'name': '李武'}})
print(info)
执行结果:
UpdateResult({'n': 2, 'nModified': 2, 'ok': 1.0, 'updatedExisting': True}, acknowledged=True)
删除文档
删除文档也有两个方法。
delete_one方法
删除符合条件的第一条记录。
示例如下:
info = collection.delete_one({'name': '李雷'})
print(info)
delete_many方法
删除符合条件的所有记录。
示例如下:
info = collection.delete_many({'age': {'$gte': 20}})
print(info)
执行结果:
DeleteResult({'n': 2, 'ok': 1.0}, acknowledged=True)
总结
本文内容主要为使用Python 对Mongodb数据库的一些基本操作整理。
相关文章:
Python MongoDB 基本操作
本文内容主要为使用Python 对Mongodb数据库的一些基本操作整理。 目录 安装类库 操作实例 引用类库 连接服务器 连接数据库 添加文档 添加单条 批量添加 查询文档 查询所有文档 查询部分文档 使用id查询 统计查询 排序 分页查询 更新文档 update_one方法 upd…...
Node.js 入门:
Node.js 是一个开源、跨平台的 JavaScript 运行时环境,它允许开发者在浏览器之外编写命令行工具和服务器端脚本。以下是一些关于 Node.js 的基础教程: 1. **Node.js 入门**: - 了解 Node.js 的基本概念,包括它是一个基于 Chro…...
java8 List的Stream流操作 (实用篇 三)
目录 java8 List的Stream流操作 (实用篇 三) 初始数据 1、Stream过滤: 过滤-常用方法 1.1 筛选单元素--年龄等于18 1.2 筛选单元素--年龄大于18 1.3 筛选范围--年龄大于18 and 年龄小于40 1.4 多条件筛选--年龄大于18 or 年龄小于40 and sex男 1.5 多条件筛…...
机器学习python实践——数据“相关性“的一些补充性个人思考
在上一篇“数据白化”的文章中,说到了数据“相关性”的概念,但是在统计学中,不仅存在“相关性”还存在“独立性”等等,所以,本文主要对数据“相关性”进行一些补充。当然,如果这篇文章还能入得了各位“看官…...
MySQL——触发器(trigger)基本结构
1、修改分隔符符号 delimiter $$ $$可以修改 2、创建触发器函数名称 create trigger 函数名 3、什么样在操作触发,操作哪个表 after :……之后触发 before :……之后触发 insert :……之后触发 update :……之后触…...
数字孪生定义及应用介绍
数字孪生定义及应用介绍 1 数字孪生(Digital Twin, DT)概述1.1 定义1.2 功能1.3 使用场景1.4 数字孪生三步走1.4.1 数字模型1.4.2 数字影子1.4.3 数字孪生 数字孪生地球平台Earth-2 参考 1 数字孪生(Digital Twin, DT)概述 数字孪…...
数据赋能(122)——体系:数据清洗——技术方法、主要工具
技术方法 数据清洗标准模型是将数据输入到数据清洗处理器,通过一系列步骤“清理”数据,然后以期望的格式输出清理过的数据。数据清洗从数据的准确性、完整性、一致性、惟一性、适时性、有效性几个方面来处理数据的丢失值、越界值、不一致代码、重复数据…...
【SCAU数据挖掘】数据挖掘期末总复习题库简答题及解析——中
1. 某学校对入学的新生进行性格问卷调查(没有心理学家的参与),根据学生对问题的回答,把学生的性格分成了8个类别。请说明该数据挖掘任务是属于分类任务还是聚类任务?为什么?并利用该例说明聚类分析和分类分析的异同点。 解答: (a)该数据…...
2024年注册安全工程师报名常见问题汇总!
注册安全工程师报名 24年注册安全工程师报名已正式拉开序幕,报名时间为6月18日—7月10日,考试时间为10月26日—10月27日。 目前经有12个地区公布了2024年注册安全工程师报名时间: 注册安全工程师报名信息完善 根据注安报名系统提示&am…...
JRebel-JVMTI [FATAL] Couldn‘t write to C:\Users\中文用户名-完美解决
提示:文章写完后,目录可以自动生成,如何生成可参考右边的帮助文档 文章目录 热部署下载参考博客解决第一步第二步第三步:第四步: 热部署下载 下载后启动报错:JRebel-JVMTI [FATAL] Couldn’t write to C:\…...
STM32基于DMA数据转运和AD多通道
文章目录 1. DMA数据转运 1.1 初始化DMA步骤 1.2 DMA的库函数 1.3 设置当前数据寄存器 1.4 DMA获取当前数据寄存器 2. DMA数据转运 2.1 DMA.C 2.2 DMA.H 2.3 MAIN.C 3. DMAAD多通道 3.1 AD.C 3.2 AD.H 3.3 MAIN.C 1. DMA数据转运 对于DMA的详细解析可以看下面这篇…...
安卓应用开发——Android Studio中通过id进行约束布局
在Android开发中,布局通常使用XML文件来描述,而约束(如相对位置、大小等)可以通过多种方式实现,但直接使用ID进行约束并不直接对应于Android的传统布局系统(如LinearLayout、RelativeLayout等)。…...
Elasticsearch过滤器(filter):原理及使用
Hi~!这里是奋斗的小羊,很荣幸您能阅读我的文章,诚请评论指点,欢迎欢迎 ~~ 💥💥个人主页:奋斗的小羊 💥💥所属专栏:C语言 🚀本系列文章为个人学习…...
Docker配置与使用详解
一、引言 随着云计算和微服务的兴起,Docker作为一种轻量级的容器化技术,越来越受到开发者和运维人员的青睐。Docker通过容器化的方式,将应用程序及其依赖项打包成一个可移植的镜像,从而实现了应用程序的快速部署和扩展。本文将详…...
触控MCU芯片(1):英飞凌PSoC第6代第7代
前言: 说到触摸MCU芯片,这个历史也是很久了,比如日常经常接触到的洗衣机、电冰箱、小家电,隔着一层玻璃,轻轻一按就能识别按键,感觉比过去纯机械式的按键更高级更美观,不仅白电,现在很多汽车也都在进行触摸按键的改版,不再使用笨重的机械按键,比如空调调温按键、档位…...
git pull报错:unable to pull from remote repository due to conflicting tag(s)
背景 我在vscode里正常拉取代码,突然就报了如题所示的错误。 原因 因为vscode的拉取按钮执行的实际命令是:git pull --tags origin branch-name,该命令的实际含义是从远程仓库拉取指定的分支和该远程仓库上的所有标签。 在拉取标签时本地的…...
Python将字符串用特定字符分割并前面加序号
Python将字符串用特定字符分割并前面加序号 Python将字符串用特定字符分割并前面加序号,今天项目中就遇到,看着不难,得花点时间搞出来急用啊,在网上找了一圈,没发现有完整流程的文章。所以就搞出来并写了这个文章。仅…...
【第16章】Vue实战篇之跨域解决
文章目录 前言一、浏览器跨域二、配置代理1.公共请求2.代理配置 总结 前言 前后端项目分离衍生出浏览器跨域问题,开发之前我们通过配置代理解决这个问题。 一、浏览器跨域 浏览器的跨域问题主要是由于浏览器的同源策略导致的。同源策略是浏览器的一个安全功能&…...
【PB案例学习笔记】-22制作一个语音朗读金额小应用
写在前面 这是PB案例学习笔记系列文章的第22篇,该系列文章适合具有一定PB基础的读者。 通过一个个由浅入深的编程实战案例学习,提高编程技巧,以保证小伙伴们能应付公司的各种开发需求。 文章中设计到的源码,小凡都上传到了gite…...
glmark2代码阅读总结
glmark2代码阅读总结 一、总体 用输入参数生成testbench项用scene和benchmark管理进行复用通过类的重载,创建出不同的分支和具体的实现点,如scene和mainloop类用例执行又规划,每个scene都统一有setup,等使用scene的继承关系&…...
eNSP-Cloud(实现本地电脑与eNSP内设备之间通信)
说明: 想象一下,你正在用eNSP搭建一个虚拟的网络世界,里面有虚拟的路由器、交换机、电脑(PC)等等。这些设备都在你的电脑里面“运行”,它们之间可以互相通信,就像一个封闭的小王国。 但是&#…...
设计模式和设计原则回顾
设计模式和设计原则回顾 23种设计模式是设计原则的完美体现,设计原则设计原则是设计模式的理论基石, 设计模式 在经典的设计模式分类中(如《设计模式:可复用面向对象软件的基础》一书中),总共有23种设计模式,分为三大类: 一、创建型模式(5种) 1. 单例模式(Sing…...
Flask RESTful 示例
目录 1. 环境准备2. 安装依赖3. 修改main.py4. 运行应用5. API使用示例获取所有任务获取单个任务创建新任务更新任务删除任务 中文乱码问题: 下面创建一个简单的Flask RESTful API示例。首先,我们需要创建环境,安装必要的依赖,然后…...
Java 语言特性(面试系列1)
一、面向对象编程 1. 封装(Encapsulation) 定义:将数据(属性)和操作数据的方法绑定在一起,通过访问控制符(private、protected、public)隐藏内部实现细节。示例: public …...
在四层代理中还原真实客户端ngx_stream_realip_module
一、模块原理与价值 PROXY Protocol 回溯 第三方负载均衡(如 HAProxy、AWS NLB、阿里 SLB)发起上游连接时,将真实客户端 IP/Port 写入 PROXY Protocol v1/v2 头。Stream 层接收到头部后,ngx_stream_realip_module 从中提取原始信息…...
Python实现prophet 理论及参数优化
文章目录 Prophet理论及模型参数介绍Python代码完整实现prophet 添加外部数据进行模型优化 之前初步学习prophet的时候,写过一篇简单实现,后期随着对该模型的深入研究,本次记录涉及到prophet 的公式以及参数调优,从公式可以更直观…...
第一篇:Agent2Agent (A2A) 协议——协作式人工智能的黎明
AI 领域的快速发展正在催生一个新时代,智能代理(agents)不再是孤立的个体,而是能够像一个数字团队一样协作。然而,当前 AI 生态系统的碎片化阻碍了这一愿景的实现,导致了“AI 巴别塔问题”——不同代理之间…...
算法岗面试经验分享-大模型篇
文章目录 A 基础语言模型A.1 TransformerA.2 Bert B 大语言模型结构B.1 GPTB.2 LLamaB.3 ChatGLMB.4 Qwen C 大语言模型微调C.1 Fine-tuningC.2 Adapter-tuningC.3 Prefix-tuningC.4 P-tuningC.5 LoRA A 基础语言模型 A.1 Transformer (1)资源 论文&a…...
回溯算法学习
一、电话号码的字母组合 import java.util.ArrayList; import java.util.List;import javax.management.loading.PrivateClassLoader;public class letterCombinations {private static final String[] KEYPAD {"", //0"", //1"abc", //2"…...
第7篇:中间件全链路监控与 SQL 性能分析实践
7.1 章节导读 在构建数据库中间件的过程中,可观测性 和 性能分析 是保障系统稳定性与可维护性的核心能力。 特别是在复杂分布式场景中,必须做到: 🔍 追踪每一条 SQL 的生命周期(从入口到数据库执行)&#…...
