当前位置: 首页 > news >正文

【数学】什么是最大似然估计?如何求解最大似然估计

背景

最大似然估计(Maximum Likelihood Estimation, MLE)是一种估计统计模型参数的方法。它在众多统计学领域中被广泛使用,比如回归分析、时间序列分析、机器学习和经济学。其核心思想是:给定一个观测数据集,找到一组参数,使得在这些参数下观测到当前数据的可能性(似然)最大。

公式

假设我们有一个参数为 θ \theta θ 的概率分布,观测数据为 X = ( x 1 , x 2 , … , x n ) X = (x_1, x_2, \ldots, x_n) X=(x1,x2,,xn),则似然函数(Likelihood Function)可以表示为:
L ( θ ; X ) = P ( X ∣ θ ) = ∏ i = 1 n P ( x i ∣ θ ) L(\theta; X) = P(X|\theta) = \prod_{i=1}^n P(x_i|\theta) L(θ;X)=P(Xθ)=i=1nP(xiθ)

为了简化计算,我们通常使用对数似然函数(Log-Likelihood Function):
ℓ ( θ ; X ) = log ⁡ L ( θ ; X ) = ∑ i = 1 n log ⁡ P ( x i ∣ θ ) \ell(\theta; X) = \log L(\theta; X) = \sum_{i=1}^n \log P(x_i|\theta) (θ;X)=logL(θ;X)=i=1nlogP(xiθ)

最大似然估计的目标是找到参数 θ \theta θ,使得对数似然函数 ℓ ( θ ; X ) \ell(\theta; X) (θ;X) 达到最大值。即:
θ ^ = arg ⁡ max ⁡ θ ℓ ( θ ; X ) \hat{\theta} = \arg \max_\theta \ell(\theta; X) θ^=argθmax(θ;X)

示例题目

正态分布的概率密度函数(PDF)可以表示为:
f ( x ∣ μ , σ 2 ) = 1 2 π σ 2 exp ⁡ ( − ( x − μ ) 2 2 σ 2 ) f(x|\mu, \sigma^2) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left(-\frac{(x - \mu)^2}{2\sigma^2}\right) f(xμ,σ2)=2πσ2 1exp(2σ2(xμ)2)

假设我们有一组观测数据 X = ( x 1 , x 2 , … , x n ) X = (x_1, x_2, \ldots, x_n) X=(x1,x2,,xn),这些数据都来自于一个正态分布 N ( μ , σ 2 ) N(\mu, \sigma^2) N(μ,σ2)。我们希望估计正态分布的参数 μ \mu μ σ 2 \sigma^2 σ2
观测数据为 X = ( x 1 , x 2 , … , x n ) X = (x_1, x_2, \ldots, x_n) X=(x1,x2,,xn)

详细讲解

  1. 写出似然函数:根据正态分布的概率密度函数,似然函数可以写为:
    似然函数 L ( μ , σ 2 ; X ) L(\mu, \sigma^2; X) L(μ,σ2;X) 是在给定参数 μ \mu μ σ 2 \sigma^2 σ2 下,观测数据 X X X 出现的概率。对于独立同分布的数据,这个概率是每个数据点概率密度的乘积,即:
    L ( μ , σ 2 ; X ) = ∏ i = 1 n f ( x i ∣ μ , σ 2 ) L(\mu, \sigma^2; X) = \prod_{i=1}^n f(x_i|\mu, \sigma^2) L(μ,σ2;X)=i=1nf(xiμ,σ2)

    将正态分布的概率密度函数代入似然函数中,得到:
    L ( μ , σ 2 ; X ) = ∏ i = 1 n 1 2 π σ 2 exp ⁡ ( − ( x i − μ ) 2 2 σ 2 ) L(\mu, \sigma^2; X) = \prod_{i=1}^n \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left(-\frac{(x_i - \mu)^2}{2\sigma^2}\right) L(μ,σ2;X)=i=1n2πσ2 1exp(2σ2(xiμ)2)

对数似然函数

  1. 取对数:为了简化计算,取对数得到对数似然函数:
    ℓ ( μ , σ 2 ; X ) = ∑ i = 1 n log ⁡ ( 1 2 π σ 2 exp ⁡ ( − ( x i − μ ) 2 2 σ 2 ) ) \ell(\mu, \sigma^2; X) = \sum_{i=1}^n \log \left( \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left(-\frac{(x_i - \mu)^2}{2\sigma^2}\right) \right) (μ,σ2;X)=i=1nlog(2πσ2 1exp(2σ2(xiμ)2))
    进一步简化:
    ℓ ( μ , σ 2 ; X ) = − n 2 log ⁡ ( 2 π σ 2 ) − 1 2 σ 2 ∑ i = 1 n ( x i − μ ) 2 \ell(\mu, \sigma^2; X) = -\frac{n}{2} \log(2\pi\sigma^2) - \frac{1}{2\sigma^2} \sum_{i=1}^n (x_i - \mu)^2 (μ,σ2;X)=2nlog(2πσ2)2σ21i=1n(xiμ)2

  2. 求导并解方程:对 μ \mu μ σ 2 \sigma^2 σ2 分别求导并令其等于零,可以得到参数的估计值。
    μ \mu μ 求导:
    ∂ ℓ ∂ μ = 1 σ 2 ∑ i = 1 n ( x i − μ ) = 0 \frac{\partial \ell}{\partial \mu} = \frac{1}{\sigma^2} \sum_{i=1}^n (x_i - \mu) = 0 μ=σ21i=1n(xiμ)=0
    解得:
    μ ^ = 1 n ∑ i = 1 n x i \hat{\mu} = \frac{1}{n} \sum_{i=1}^n x_i μ^=n1i=1nxi

    σ 2 \sigma^2 σ2 求导:
    ∂ ℓ ∂ σ 2 = − n 2 σ 2 + 1 2 σ 4 ∑ i = 1 n ( x i − μ ) 2 = 0 \frac{\partial \ell}{\partial \sigma^2} = -\frac{n}{2\sigma^2} + \frac{1}{2\sigma^4} \sum_{i=1}^n (x_i - \mu)^2 = 0 σ2=2σ2n+2σ41i=1n(xiμ)2=0
    解得:
    σ ^ 2 = 1 n ∑ i = 1 n ( x i − μ ) 2 \hat{\sigma}^2 = \frac{1}{n} \sum_{i=1}^n (x_i - \mu)^2 σ^2=n1i=1n(xiμ)2

Python代码求解

import numpy as np# 观测数据
X = np.array([2.3, 1.9, 3.1, 2.8, 2.4])# 估计参数
mu_hat = np.mean(X)
sigma_squared_hat = np.var(X, ddof=0)print("估计的均值 μ:", mu_hat)
print("估计的方差 σ^2:", sigma_squared_hat)

实际生活中的例子

最大似然估计在实际生活中的应用广泛。例如,在医学研究中,科学家常常需要估计某种疾病的发病率。假设有一个新的传染病,研究人员需要估计其传播率(即,传染给某人的概率)。他们收集了若干病例数据,通过最大似然估计,可以得到传播率的最优估计,从而帮助制定防控策略。

最大似然估计同样可以应用于金融领域,比如估计股票的收益率和风险;在机器学习中,用于训练模型的参数,如线性回归中的回归系数等。

相关文章:

【数学】什么是最大似然估计?如何求解最大似然估计

背景 最大似然估计(Maximum Likelihood Estimation, MLE)是一种估计统计模型参数的方法。它在众多统计学领域中被广泛使用,比如回归分析、时间序列分析、机器学习和经济学。其核心思想是:给定一个观测数据集,找到一组…...

跟张良均老师学大数据人工智能|企业项目试岗实训开营

我国高校毕业生数量连年快速增长,从2021年的909万人到2022年的1076万人,再到2023年的1158万人,预计到2024年将达到1187万人,2024年高校毕业生数量再创新高。 当年高校毕业生人数不等于进入劳动力市场的高校毕业生人数&#x…...

Pentest Muse:一款专为网络安全人员设计的AI助手

关于Pentest Muse Pentest Muse是一款专为网络安全研究人员和渗透测试人员设计和开发的人工智能AI助手,该工具可以帮助渗透测试人员进行头脑风暴、编写Payload、分析代码或执行网络侦查任务。除此之外,Pentest Muse甚至还能够执行命令行代码并以迭代方式…...

10 SpringBoot 静态资源访问

我们在开发Web项目的时候,往往会有很多静态资源,如html、图片、css等。那如何向前端返回静态资源呢? 以前做过web开发的同学应该知道,我们以前创建的web工程下面会有一个webapp的目录,我们只要把静态资源放在该目录下…...

Unity 之通过自定义协议从浏览器启动本地应用程序

内容将会持续更新,有错误的地方欢迎指正,谢谢! Unity 之通过自定义协议从浏览器启动本地应用程序 TechX 坚持将创新的科技带给世界! 拥有更好的学习体验 —— 不断努力,不断进步,不断探索 TechX —— 心探索、心进…...

Python抓取天气信息

Python的详细学习还是需要些时间的。如果有其他语言经验的,可以暂时跟着我来写一个简单的例子。 2024年最新python教程全套,学完即可进大厂!(附全套视频 下载) (qq.com) 我们计划抓取的数据:杭州的天气信息…...

【超越拟合:深度学习中的过拟合与欠拟合应对策略】

如何处理过拟合 由于过拟合的主要问题是你的模型与训练数据拟合得太好,因此你需要使用技术来“控制它”。防止过拟合的常用技术称为正则化。我喜欢将其视为“使我们的模型更加规则”,例如能够拟合更多类型的数据。 让我们讨论一些防止过拟合的方法。 获…...

【Orange Pi 5与Linux内核编程】-理解Linux内核中的container_of宏

理解Linux内核中的container_of宏 文章目录 理解Linux内核中的container_of宏1、了解C语言中的struct内存表示2、Linux内核的container_of宏实现理解3、Linux内核的container_of使用 Linux 内核包含一个名为 container_of 的非常有用的宏。本文介绍了解 Linux 内核中的 contain…...

003.Linux SSH协议工具

我 的 个 人 主 页:👉👉 失心疯的个人主页 👈👈 入 门 教 程 推 荐 :👉👉 Python零基础入门教程合集 👈👈 虚 拟 环 境 搭 建 :👉&…...

web前端组织分析:深入剖析其结构、功能与未来趋势

web前端组织分析:深入剖析其结构、功能与未来趋势 在数字化浪潮的推动下,Web前端组织作为连接用户与数字世界的桥梁,其重要性日益凸显。本文将从四个方面、五个方面、六个方面和七个方面对Web前端组织进行深入分析,揭示其结构特点…...

GitCode热门开源项目推荐:Spider网络爬虫框架

在数字化高速发展时代,数据已成为企业决策和个人研究的重要资源。网络爬虫作为一种强大的数据采集工具受到了广泛的关注和应用。在GitCode这一优秀的开源平台上,Spider网络爬虫框架凭借其简洁、高效和易用性,成为了众多开发者的首选。 一、系…...

实现一个二叉树的前序遍历、中序遍历和后序遍历方法。

package test3;public class Test_A27 {// 前序遍历(根-左-右)public void preOrderTraversal(TreeNode root){if(rootnull){return;}System.out.println(root.val"");preOrderTraversal(root.left);preOrderTraversal(root.right);}// 中序遍…...

串扰(二)

三、感性串扰 首先看下串扰模型及电流方向: 由于电感是阻碍电流变化,受害线的电流方向和攻击线的电流方向相反。同时由于受害线阻抗均匀,故有Vb-Vf(感应电流属于电池内部电流)。 分析感性串扰大小仍然是按微分的方法…...

零基础入门学用Arduino 第四部分(三)

重要的内容写在前面: 该系列是以up主太极创客的零基础入门学用Arduino教程为基础制作的学习笔记。个人把这个教程学完之后,整体感觉是很好的,如果有条件的可以先学习一些相关课程,学起来会更加轻松,相关课程有数字电路…...

Mp3文件结构全解析(一)

Mp3文件结构全解析(一) MP3 文件是由帧(frame)构成的,帧是MP3 文件最小的组成单位。MP3的全称应为MPEG1 Layer-3 音频 文件,MPEG(Moving Picture Experts Group) 在汉语中译为活动图像专家组,特指活动影音压缩标准,MPEG 音频文件…...

ES 8.14 Java 代码调用,增加knnSearch 和 混合检索 mixSearch

1、pom依赖 <dependency><groupId>org.elasticsearch.client</groupId><artifactId>elasticsearch-rest-client</artifactId><version>8.14.0</version></dependency><dependency><groupId>co.elastic.clients<…...

被腰斩的颍川郡守赵广汉

在颍川&#xff0c;他发明了举报箱&#xff0c;铁腕扫黑除恶。因为曾经在郡府所在地阳翟&#xff08;禹州&#xff09;当过县令&#xff0c;熟悉颍川社情民意&#xff0c;所以&#xff0c;任职郡守后雷厉风行&#xff0c;才不到一年&#xff0c;不但制服了骄横的豪门大族&#…...

【2024最新华为OD-C/D卷试题汇总】[支持在线评测] 目录管理器(200分) - 三语言AC题解(Python/Java/Cpp)

🍭 大家好这里是清隆学长 ,一枚热爱算法的程序员 ✨ 本系列打算持续跟新华为OD-C/D卷的三语言AC题解 💻 ACM银牌🥈| 多次AK大厂笔试 | 编程一对一辅导 👏 感谢大家的订阅➕ 和 喜欢💗 📎在线评测链接 目录管理器(200分) 🌍 评测功能需要订阅专栏后私信联系清隆…...

关于自学\跳槽\转行做网络安全行业的一些建议

很好&#xff0c;如果你是被题目吸引过来的&#xff0c;那请看完再走&#xff0c;还是有的~ 为什么写这篇文章 如何自学入行&#xff1f;如何小白跳槽&#xff0c;年纪大了如何转行等类似问题 &#xff0c;发现很多人都有这样的困惑。下面的文字其实是我以前的一个回答&#…...

计算机网络(1) OSI七层模型与TCP/IP四层模型

一.OSI七层模型 OSI 七层模型是国际标准化组织ISO提出的一个网络分层模型&#xff0c;它的目的是使各种不同的计算机和网络在世界范围内按照相同的标准框架实现互联。OSI 模型把网络通信的工作分为 7 层&#xff0c;从下到上分别是物理层、数据链路层、网络层、传输层、会话层、…...

手游刚开服就被攻击怎么办?如何防御DDoS?

开服初期是手游最脆弱的阶段&#xff0c;极易成为DDoS攻击的目标。一旦遭遇攻击&#xff0c;可能导致服务器瘫痪、玩家流失&#xff0c;甚至造成巨大经济损失。本文为开发者提供一套简洁有效的应急与防御方案&#xff0c;帮助快速应对并构建长期防护体系。 一、遭遇攻击的紧急应…...

UE5 学习系列(三)创建和移动物体

这篇博客是该系列的第三篇&#xff0c;是在之前两篇博客的基础上展开&#xff0c;主要介绍如何在操作界面中创建和拖动物体&#xff0c;这篇博客跟随的视频链接如下&#xff1a; B 站视频&#xff1a;s03-创建和移动物体 如果你不打算开之前的博客并且对UE5 比较熟的话按照以…...

1688商品列表API与其他数据源的对接思路

将1688商品列表API与其他数据源对接时&#xff0c;需结合业务场景设计数据流转链路&#xff0c;重点关注数据格式兼容性、接口调用频率控制及数据一致性维护。以下是具体对接思路及关键技术点&#xff1a; 一、核心对接场景与目标 商品数据同步 场景&#xff1a;将1688商品信息…...

Nuxt.js 中的路由配置详解

Nuxt.js 通过其内置的路由系统简化了应用的路由配置&#xff0c;使得开发者可以轻松地管理页面导航和 URL 结构。路由配置主要涉及页面组件的组织、动态路由的设置以及路由元信息的配置。 自动路由生成 Nuxt.js 会根据 pages 目录下的文件结构自动生成路由配置。每个文件都会对…...

Java 加密常用的各种算法及其选择

在数字化时代&#xff0c;数据安全至关重要&#xff0c;Java 作为广泛应用的编程语言&#xff0c;提供了丰富的加密算法来保障数据的保密性、完整性和真实性。了解这些常用加密算法及其适用场景&#xff0c;有助于开发者在不同的业务需求中做出正确的选择。​ 一、对称加密算法…...

C++ 求圆面积的程序(Program to find area of a circle)

给定半径r&#xff0c;求圆的面积。圆的面积应精确到小数点后5位。 例子&#xff1a; 输入&#xff1a;r 5 输出&#xff1a;78.53982 解释&#xff1a;由于面积 PI * r * r 3.14159265358979323846 * 5 * 5 78.53982&#xff0c;因为我们只保留小数点后 5 位数字。 输…...

关于 WASM:1. WASM 基础原理

一、WASM 简介 1.1 WebAssembly 是什么&#xff1f; WebAssembly&#xff08;WASM&#xff09; 是一种能在现代浏览器中高效运行的二进制指令格式&#xff0c;它不是传统的编程语言&#xff0c;而是一种 低级字节码格式&#xff0c;可由高级语言&#xff08;如 C、C、Rust&am…...

MySQL中【正则表达式】用法

MySQL 中正则表达式通过 REGEXP 或 RLIKE 操作符实现&#xff08;两者等价&#xff09;&#xff0c;用于在 WHERE 子句中进行复杂的字符串模式匹配。以下是核心用法和示例&#xff1a; 一、基础语法 SELECT column_name FROM table_name WHERE column_name REGEXP pattern; …...

基于TurtleBot3在Gazebo地图实现机器人远程控制

1. TurtleBot3环境配置 # 下载TurtleBot3核心包 mkdir -p ~/catkin_ws/src cd ~/catkin_ws/src git clone -b noetic-devel https://github.com/ROBOTIS-GIT/turtlebot3.git git clone -b noetic https://github.com/ROBOTIS-GIT/turtlebot3_msgs.git git clone -b noetic-dev…...

Java求职者面试指南:计算机基础与源码原理深度解析

Java求职者面试指南&#xff1a;计算机基础与源码原理深度解析 第一轮提问&#xff1a;基础概念问题 1. 请解释什么是进程和线程的区别&#xff1f; 面试官&#xff1a;进程是程序的一次执行过程&#xff0c;是系统进行资源分配和调度的基本单位&#xff1b;而线程是进程中的…...