当前位置: 首页 > news >正文

[Linux] UDP协议介绍:UDP协议格式、端口号在网络协议栈那一层工作...

TCP/IP网络模型, 将网络分为了四层:

|huge

之前的文章中以HTTPHTTPS这两个协议为代表, 简单介绍了应用层协议. 实际上, 无论是HTTP还是HTTPS等应用层协议, 都是在传输层协议的基础上实现的

而传输层协议中最具代表性的就是: UDPTCP协议了. 以HTTP为例, 在使用HTTP协议通信之前, 是先需要建立TCP连接的.

那么, 传输层协议的介绍就先从UDP协议开始

再谈端口号

在网络通信中, 端口号可以标识主机中的唯一进程.

我们在使用UDP/TCP Socket时, 都对服务器绑定过端口号. 在实际通信中, 当一个客户端向服务器发送数据时, 服务器主机接收到数据之后, 操作系统会 根据报文中的端口号 将数据推送给对应的进程

TCP/IP协议中, 通过 源IP、源端口、目的IP、目的端口、协议号 这样一个五元组标识一个通信

IP标记主机唯一性(用来寻找主机), 端口号标记进程唯一性(用来选择主机中的进程)

其中, 端口号实际是传输层的内容, 因为传输层向上就是应用层了, 那么传输层就需要解决将数据交给上层哪一个进程的问题

IP则是解决报文在网络中进行路由的问题, 需要通过 源IP和目的IP解决从哪来到哪去 的问题

实际上, 通过通过系统调用绑定的IP端口号, 是会使用在TCP/IP的不同层次中的: IP使用在网络层, 端口号则使用在传输层

端口号划分

端口号是16位的, 是因为传输层报头中存在16位用来存储端口号

那么端口号的范围就是: 0~66535

其中0~1023是知名端口号, 它特定分配给一些知名的应用层协议使用, 比如:

  1. SSH服务器, 使用22端口

  2. FTP服务器, 使用21端口

  3. TELNET服务器, 使用23端口

  4. HTTP服务器, 使用80端口

  5. HTTPS服务器, 使用443端口

  6. 知名端口号在/etc/services文件中存储着, 可以进行查看

    |wide

这些知名端口号一般是不允许分配给其他服务的

而剩下的1024~65535, 就是操作系统可以动态分配的端口号, 也可以被指定.

UDP协议

之前介绍过, 主机发送数据通过不同的层级时, 不同的协议是会对数据添加报头的

即之前我们使用sendto()等一系列系统调用时, 并不是直接将数据发送到了另一套主机上, 而是由操作系统给网络的下一层, 添加对应的协议报头:

PC1 |inline

不同协议会添加自己的报头, 下面就介绍一下UDP协议的格式

UDP协议格式

UDP协议的格式可以用一张图来表示

从图中可以看到出, UDP协议报头部分是固定的8个字节, 剩下的则是应用层传输过来的原始数据, 即有效载荷

UDP协议的报头非常容易理解

首先, 这里有三个概念简单理解一下:

传输层协议接收到来自上层的数据之后, 需要添加自己的协议报头, 这个行为叫 封装. 封装之后, 就可以将数据继续向下层传输

直到对应主机的传输层收到封装数据之后, 层协议需要对封装数据进行 解包, 分别读取数据和报头

之后, 传输层还需要将获取到的数据内容 传输到 指定应用层进程的可用空间, 这个行为叫 分用

实际上, TCP/IP的每层都要考虑如何封装、解包和分用的问题


UDP协议使用固定长度的报头长度, 就很好的解决了如何封装和解包的问题

主机1在使用UDP协议发送数据时, 只需要在原始数据前加上这8字节的报头就可以 实现封装

对方主机获取到数据之后, 只需要去掉前8个字节, 就可以获取有效载荷 实现解包

而, 分用的实现 就需要读取UDP报头的内容了

UDP报头中存在 16位的源端口号16位的目的端口号. 当主机接收到UDP报文之后, 读取报头中存储的 16位目的端口号, 就可以知道要向哪一个应用层进程的可用空间传输数据了. 即 可以实现分用

Linux中, 一切皆文件. 我们之前也介绍过socket套接字, 实际就是文件描述符

当传输层协议知道应用层对应服务的端口号之后, 就可以找到对应的进程, 然后就可以找到进程对应的网络文件, 将数据写入到网络文件的文件缓冲区中

进程服务就可以读取数据了

而, 16位UDP长度该作何理解呢?

16位UDP长度表示, UDP报文的整体长度, 而不是单指有效载荷的长度

我们知道, UDP协议的特点之一是 面向数据报

面向数据报就表示, 每一个UDP数据报都应该是完整的. 两个数据报之间是具有明显的边界的.

当接收主机接收到多个UDP报文时, 可以通过读取每个报头中的UDP长度来准确的获取到完整的UDP报文, 而不产生混乱

而, 16位检验和则用于检验报文内容是否出现了差错等, 如果出现了差错操作系统就会直接丢弃掉整个报文(这就是UDP协议 不可靠 的表现)

UDP协议的不可靠是否看作一种缺点?

不能将 不可靠 看作UDP协议的缺点, 不可靠 是UDP协议的特点

使用UDP协议通信, 数据报发生损坏会被直接丢弃. 这使UDP协议可以使用在一些 对数据丢失有一定的容忍度的 一些特定的场景中, 比如: 视频直播

视频直播可以容忍短暂的卡顿和画面丢失, 但是需要保证直播内容的持续输出. 类似这样的场景中, UDP协议可以很好的适配

也就是说, 不可靠 不是一种缺点 而是一种特点, 可以用在更合适的场景中

UDP不可靠, 也就意味这它不用像TCP那样 需要做一系列的保证数据可靠的操作和处理, 也就不用非常的复杂


总的来说, UDP协议的格式就是8字节的UDP报头+原始数据

UDP协议报头在Linux中的格式

那么, 使用UDP协议通信时, 操作系统在传输层添加协议报头时, 是以什么形式添加的, UDP报头的本质是什么?

网络协议栈TCP/IP是在Linux内核中实现的, Linux内核是由C语言实现的

而Linux内核中, UDP报头的实现就是一个结构体:

Linux_2.6.38_Kernel |large

这就意味着, 操作系统使用UDP协议封装数据时, 是以结构体的形式添加的UDP协议报头, 因为UDP协议报头的格式在Linux内核中的实现方式就是一个结构体

那么, 我们使用UDP协议创建网络套接字时候, 需要将套接字bind()到特定的端口上

然后在使用sendto()进行发送数据时, 操作系统就会创建udphdr对象并填充端口号、内容以及检验和. 并将udphdr对象以一定的形式拷贝到原始数据之前. 形成一个完整的UDP报文

UDP的缓冲区

在Linux系统中, 我们无论使用UDP还是TCP进行通信, 无论是使用sendto()还是write()向网络中发送数据

实际上, 在函数执行完毕之后都没有直接将数据发送到网络中, 而是在操作系统对数据进行处理了之后, 将数据放入到 发送缓冲区 中, 什么时候真正的发送出去, 由操作系统内核决定

所以, 要理解一个东西: sendto()write()并不是发送的接口, 而是拷贝的接口. 调用这两个接口, 都只是将数据拷贝到内核中, 而不是制剂发送到网络中或者直接写入到内核中

接收数据也是一样的, 操作系统接收网络数据时, 从网络层到传输层 也会将数据暂时存储到接收缓冲区, 等待内核中传输层的接收、解包以及分用

实际上, UDP协议在内核中并没有真正意义上的发送缓冲区

首先, 因为使用UDP协议在发送数据时, 操作系统需要对数据进行的处理动作很简单, 毕竟udphdr是一个很简单的只有8字节的结构体, 只需要添加一个结构体就可以. 并且UDP协议不需要保证数据可靠性, 这也就意味着UDP协议不需要将发送的数据在本地长时间维护, 也就不需要一个真正的发送缓冲区

这意味着, 当使用sendto()将数据交给内核时, 内核会尽快的将数据发送到网络层, 不需要在传输层存储数据

不过, 虽然UDP协议并没有发送缓冲区, 但 UDP协议是有接收缓冲区的

也就是说, Linux系统内核中维护有一块空间 专门存储收到的UDP报文数据, 并且 针对每一个UDP套接字都会维护那一块空间, 这就是内核中UDP的接收缓冲区

当操作系统接收到UDP协议数据报时, UDP协议会对UDP数据报进行解包, 然后再将数据存储到对应UDP Socket的接收缓冲区中, 这个过程实际就是UDP协议对UDP数据报解包和分用的过程

但是, UDP协议是面向数据报的. 使用UDP协议通信发送数据时, 都是以一个数据报一个数据报的形式发送的. 但是UDP协议的接收缓冲区是 不保证 接收到UDP数据报的顺序 与 发送端发送UDP数据报的顺序 是一致的(即, 如果发送端按照12345的顺序发送数据报, 接收端很可能并不是按照12345的顺序接收到的)

UDP数据报的发送顺序与接收顺序可能一致, 也体现了UDP协议的不可靠性

因为无法保证UDP数据报的接收顺序, 所以如果有顺序一致的需求, 那么接收端就需要对UDP数据报进行重排序, 一般在发送方和接收方的应用层实现

并且, UDP协议接收缓冲区满了之后, 再发送过来的UDP数据报会被直接丢弃

UDP协议发送端与接收端的 发送 与 接收 是互不影响的, 所以UDP协议是全双工的. 使用UDP协议可以同时发送和接收数据报

UDP报文大小

UDP报文首部中, 有一块16位的空间 是用来存储UDP报文总长度的

那么也就意味着: 一个UDP报文, 最大也就 2的16次方个字节, 即 64KB(包括8字节首部)

64KB在现在是非常的小的. 那么, 如果使用UDP协议传输大一点(超过64KB)的文件时, 就需要在应用层进行分包, 多次发送. 对应的, 接收端同样需要对接受的数据进行手动拼装.


这就是关于UDP协议简单介绍的全部内容了

感谢阅读~

相关文章:

[Linux] UDP协议介绍:UDP协议格式、端口号在网络协议栈那一层工作...

TCP/IP网络模型, 将网络分为了四层: 之前的文章中以HTTP和HTTPS这两个协议为代表, 简单介绍了应用层协议. 实际上, 无论是HTTP还是HTTPS等应用层协议, 都是在传输层协议的基础上实现的 而传输层协议中最具代表性的就是: UDP和TCP协议了. 以HTTP为例, 在使用HTTP协议通信之前, …...

Spring Boot 中如何解决跨域问题、Spring Cloud 5大组件、微服务的优缺点是什么?

Spring Boot 中如何解决跨域问题 ? SpringMVC项目中使用CrossOrigin注解来解决跨域问题 , 本质是CORS RequestMapping("/hello")CrossOrigin(origins "*")//CrossOrigin(value "http://localhost:8081") //指定具体ip允许跨域public String …...

[Vulnhub] Sleepy JDWP+Tomcat+Reverse+Reverse-enginnering

信息收集 Server IP AddressPorts Opening192.168.8.100TCP:21,8009,9001 $ nmap -sV -sC 192.168.8.100 -p- --min-rate 1000 -Pn Starting Nmap 7.92 ( https://nmap.org ) at 2024-06-20 05:06 EDT Nmap scan report for 192.168.8.100 (192.168.8.100) Host is up (0.00…...

基于MATLAB的误码率与信噪比(附完整代码与分析)

目录 一. 写在前面 二. 如何计算误码率 三. 带噪声的误码率分析 3.1 代码思路 3.2 MATLAB源代码及分析 四. 总结 4.1 输入参数 4.2 规定比特长度 4.3 特殊形式比较 一. 写在前面 (1)本文章主要讨论如何仿真误码率随着信噪比变化的图像 &#…...

【2024最新华为OD-C/D卷试题汇总】[支持在线评测] 字符串筛选排序(100分) - 三语言AC题解(Python/Java/Cpp)

🍭 大家好这里是清隆学长 ,一枚热爱算法的程序员 ✨ 本系列打算持续跟新华为OD-C/D卷的三语言AC题解 💻 ACM银牌🥈| 多次AK大厂笔试 | 编程一对一辅导 👏 感谢大家的订阅➕ 和 喜欢💗 📎在线评测链接 字符串筛选排序(100分) 🌍 评测功能需要 订阅专栏 后私信…...

# 开发安全

开发安全 文章目录 开发安全安全开发生命周期安全开发目标安全开发基本准则注入类攻击手段Sql注入命令执行命令执行防御文件遍历防御 植入类安全漏洞防御XSS(前端漏洞)防御 储存型XSS文件上传防御 CSRF防御 会话固定防御 其它类型安全漏洞越权访问防御 口…...

Qt MaintenanceTool.exe使用镜像源更新Qt

环境:Windows11,Qt6.5,新版的MaintenanceTool.exe linux环境类似,mac环境可以看官方文档。 cmd命令窗口:切换到MaintenanceTool.exe所在目录,可以用“D:”切换到D盘,“cd xxxx”切换到xxxx目录…...

Java 8 Stream API介绍

Java 8引入了Stream API,这是对集合框架的一种增强,它允许你以一种声明式的方式处理数据集合。Stream API的核心在于将数据的操作分为两个主要阶段:中间操作和终端操作。中间操作返回的是一个新的Stream,可以链式调用多个中间操作…...

【前端技巧】css篇

利用counter实现计数器 counter-reset&#xff1a;为计数器设置名称&#xff0c;语法如下&#xff1a; counter-rese: <idntifier><integer>第一个参数为变量名称&#xff0c;第二个参数为初始值&#xff0c;默认为0 counter-increment&#xff1a;设置计数器增…...

2024年6月20日 (周四) 叶子游戏新闻

超市播音系统: 定时播放不同音乐 强制卸载软件: 一款强制卸载软件 免费多人沙盒游戏《宝藏世界》推出更新“潮起潮落”&#xff0c;带来全新克苏鲁风冒险准备好迎接一场超凡的冒险吧&#xff0c;MMORPG发行商gamigo宣布《宝藏世界》的最新更新&#xff1a;“潮起潮落”。这次更…...

Zookeeper 一、Zookeeper简介

1.分布式系统定义及面临的问题 分布式系统是同时跨越多给物理主机&#xff0c;独立运行的多个软件所组成的系统。类比一下&#xff0c;分布式系统就是一群人一起干活。人多力量大&#xff0c;每个服务器的算力是有限的&#xff0c;但是通过分布式系统&#xff0c;由n个服务器组…...

普通一本能找到嵌入式linux工作吗?

在开始前刚好我有一些资料&#xff0c;是我根据网友给的问题精心整理了一份「嵌入式linux的资料从专业入门到高级教程」&#xff0c; 点个关注在评论区回复“888”之后私信回复“888”&#xff0c;全部无偿共享给大家&#xff01;&#xff01;&#xff01;首先&#xff0c;普通…...

Effective C++ 改善程序与设计的55个具体做法笔记与心得 3

三. 资源管理 13. 以对象管理资源 请记住&#xff1a; 为防止资源泄露&#xff0c;使用智能指针 14. 在资源管理类中小心copying行为 请记住&#xff1a; 复制RAII对象必须一并复制他所管理的资源&#xff0c;所以资源的copying行为决定RAII对象的copying行为普遍而常见的…...

苹果的后来者居上策略:靠隐私保护打脸微软

01.苹果与微软相比更注重用户隐私 我一直是Windows的忠实用户&#xff0c;但微软疯狂地将人工智能融入一切&#xff0c;让我开始觉得应该咬咬牙换成Mac。 自小我几乎只用Windows电脑&#xff0c;所以我对MacOS一直不太适应。虽然Windows 11有其缺点&#xff0c;但总的来说&am…...

java经典面试题--进程和线程的关系/区别

进程和线程的定义以及作用 进程:进程是操作系统分配资源的基本单位,是程序的一次执行过程,它包括了程序执行的上下文环境,包括程序代码、数据、系统资源&#xff08;内存、文件、设备等&#xff09;以及执行状态等信息&#xff0c;其作用是提供一个独立的执行环境&#xff0c;…...

Solr 日志系统7.4.0部署和迁移到本地,Core Admin 添加新的core报错

文章目录 Solr部署Docker部署二进制部署 Tips:Solr设置账号密码方法1&#xff1a;(不使用)方法2&#xff1a; Core Admin 添加新的core报错Solr数据迁移 Solr部署 Docker部署 docker run -d -p 8983:8983 --name solr solr:latest docker run -d -p 8983:8983 -v /opt/solr:/…...

前缀和+双指针,CF 131F - Present to Mom

一、题目 1、题目描述 2、输入输出 2.1输入 2.2输出 3、原题链接 131F - Present to Mom 二、解题报告 1、思路分析 很经典的一种把列看作cell 来进行双指针/递推的题型 我们考虑&#xff0c;可以预处理出原矩阵中的所有star 然后我们去枚举矩形的上下边界&#xff0c;把…...

HCIA-速查-ENSP模拟器2步清空配置

需求&#xff1a;清空模拟器配置 清空当前图中配置 步骤1&#xff1a;reset saved-configuration 后输入y确认 步骤2&#xff1a;reboot后输入n否认再输入y确认 验证已经清空配置...

优选算法刷题笔记 2024.6.10-24.6.20

一、双指针算法(快慢指针,对撞指针) 艹&#xff0c;CSDN吞了我是十三题笔记&#xff01;&#xff01;&#xff01; 二、滑动窗口(滑动窗口) 1、找到字符串中所有字母异位词 class Solution {public List<Integer> findAnagrams(String s, String p) {int[] hash1 new in…...

无需科学上网:轻松实现国内使用Coze.com平台自己创建的Bot(如何实现国内免费使用GPT-4o/Gemini等最新大模型)

文章目录 📖 介绍 📖🏡 演示环境 🏡📒 如何在国内使用 Coze.com 创建的 Bot 📒📝 创建Bot📝 实现国内使用📝 测试⚓️ 相关链接 ⚓️📖 介绍 📖 Coze.com 是一个强大的平台,允许用户创建各种类型的 Bot。然而,许多国内用户可能会遇到访问问题,导致无法…...

【车载开发系列】CAN通信总线再理解(中篇)

【车载开发系列】CAN通信总线再理解&#xff08;中篇&#xff09; 九. CAN总线标准十. CAN物理层十一. CAN数据链路层1&#xff09;CAN的通信帧类型2&#xff09;CAN的标准帧格式1. CAN ID2. 数据场 3&#xff09;CAN总线仲裁 十二. CAN应用层1&#xff09;CANopen2&#xff09…...

系统编程:互斥锁,条件变量

互斥锁 使用过程: 1,声明锁: pthread_mutex_t lock; 2,初始化锁:pthread_mutex_init(&lock,NULL); 3,在线程的方法函数中上锁和解锁:(成对出现) pthread_mutex_lock(&lock); pthread_mutex_unlock(&lock); 4,销毁锁:pthread_mutex_destroy(&lock); 代码示例:…...

蓝鹏测控公司全长直线度算法项目多部门现场组织验收

关键字:全场直线度算法,直线度测量仪,直线度检测,直线度测量设备, 6月18日上午&#xff0c;蓝鹏测控公司全长直线度算法项目顺利通过多部门现场验收。该项目由公司技术部、开发部、生产部等多个部门共同参与&#xff0c;旨在提高直线度测量精度&#xff0c;满足高精度制造领域需…...

使用Python进行音频处理

通常会使用wave模块。但是&#xff0c;如果您想要处理其他类型的音频文件&#xff0c;或者需要更高级的音频处理功能&#xff0c;您可能需要安装第三方库&#xff0c;如pydub、soundfile、numpy等。 import wave # 读取WAV文件 with wave.open(input.wav, rb) as wav_file: …...

家有老人小孩,室内灰尘危害大!资深家政教你选对除尘空气净化器

哈喽&#xff0c;各位亲爱的朋友们&#xff01;今天我们来聊聊每次大扫除时最让人头疼的问题——灰尘。你有没有发现&#xff0c;两天不打扫&#xff0c;桌子上就能积上一层灰&#xff1b;阳光一照&#xff0c;地板上的灰尘都在跳舞&#xff1b;整理被子的时候&#xff0c;空气…...

AI在创造与毁灭之间摇摆:音乐产业的机遇与挑战并存

AI到底在创造还是毁掉音乐&#xff1f; 最近一个月&#xff0c;轮番上线的音乐大模型&#xff0c;一举将素人生产音乐的门槛降到了最低&#xff0c;并掀起了音乐圈会不会被AI彻底颠覆的讨论。短暂的兴奋后&#xff0c;AI产品的版权归属于谁&#xff0c;创意产业要如何在AI的阴…...

Spring Boot集成 Spring Retry 实现容错重试机制并附源码

&#x1f604; 19年之后由于某些原因断更了三年&#xff0c;23年重新扬帆起航&#xff0c;推出更多优质博文&#xff0c;希望大家多多支持&#xff5e; &#x1f337; 古之立大事者&#xff0c;不惟有超世之才&#xff0c;亦必有坚忍不拔之志 &#x1f390; 个人CSND主页——Mi…...

MDK-ARM 编译后 MAP 文件分析

本文配合 STM32 堆栈空间分布 食用更佳&#xff01; 一图胜千言。。。...

antv g6实现系统拓扑图

1 背景 为例描述各个服务、redis、mysql等之间的联系及其健康状态&#xff0c;构建系统拓扑图&#xff0c;考虑 g6 更适合处理大量数据之间的关系&#xff0c;所以我们采用g6来绘制前端的图形。 g6提供的支持&#xff1a; 节点/边类型多样&#xff0c;同样支持自定义对于节点…...

因路径规划异常导致导航停止 Failed to pass global plan to the controller

因路径规划异常导致导航停止 Failed to pass global plan to the controller 控制台错误信息: [ WARN] [1718875656.343893537, 93.698000000]: Transformed plan is empty. Aborting local planner! [ERROR] [1718875656.343922719, 93.698000000]: move_base.cpp:854 Faile…...

网站ui 特点/百度url提交

1&#xff0c;通过构造函数传值 2&#xff0c;通过属性传值...

wordpress支持asp/广告多的网站

在OpenSceneGraph中绘制OpenCascade的曲面Draw OpenCascade Geometry Surfaces in OpenSceneGraph摘要Abstract&#xff1a;本文对OpenCascade中的几何曲面数据进行简要说明&#xff0c;并结合OpenSceneGraph将这些曲面显示。关键字Key Words&#xff1a;OpenCascade、OpenScen…...

网站开发工作量/今日新闻摘抄

截至目前Vue在GitHub上的Star数已经高达152601&#xff0c;还有绝大数像笔者一样不经常star别人的Vue友们(可恨可气)。 Vue因其友好程度让更多前端爱好者加入到其中&#xff0c;开源项目对程序员来说是很有用的。你可以通过读代码并且在现有项目的基础上构建一些东西来学习&…...

企业网站无锡/seo的工具有哪些

本节引言&#xff1a; 上一节中我们学习了Intent的一些基本使用&#xff0c;知道了Intent的七个属性&#xff0c;显式Intent以及 隐式Intent&#xff0c;以及如何自定义隐式Intent&#xff0c;最后还给大家提供了一些常用的系统Intent&#xff01; 而本节跟大家讲解的是Inten…...

网站域名商代理商/品牌推广百度seo

上一个IP获取的结果不是很完善&#xff0c;究其原因是因为ip138的IP解析应对国外的地址时不是很详细&#xff0c;所以又重新写了个用Chianz.com的代码。 <!DOCTYPE html><html lang"en"><head><title></title><meta charset"U…...

wordpress 质感主题/衡阳seo服务

1. 为什么用Nosql 整个网站的瓶颈是什么&#xff1f; 数据量如果太大&#xff0c;一个机器放不下数据的索引&#xff08;BTree&#xff09;&#xff0c;一个机器内存也放不下访问量&#xff08;读写混合&#xff09;&#xff0c;一个服务器承受不了 只要开始出现以上的三种情…...