当前位置: 首页 > news >正文

指定GPU跑模型

加上一个CUDA_VISIBLE_DEVICES=0,2就行了,使用0卡和2卡跑模型,注意多卡有时候比单卡慢,4090无NVlink,数据似乎是通过串行的方式传输到多个gpu的,只不过单个gpu是并行计算,数据在gpu与gpu之间似乎是串行传输的,如果第一个卡的显存实在是太过于紧张,只有几十mb可用也可能导致cuda out of memory!
指定0卡和2卡

CUDA_VISIBLE_DEVICES=0,2 python main.py

指定2卡

CUDA_VISIBLE_DEVICES=2 python main.py

----->
确保CUDA可用,安装了与cuda对应的pytorch

import torch
print(torch.cuda.is_available())

相关文章:

指定GPU跑模型

加上一个CUDA_VISIBLE_DEVICES0,2就行了,使用0卡和2卡跑模型,注意多卡有时候比单卡慢,4090无NVlink,数据似乎是通过串行的方式传输到多个gpu的,只不过单个gpu是并行计算,数据在gpu与gpu之间似乎是串行传输的…...

Windows桌面运维----第五天

1、华为路由怎们配置IP、划分vlan、互通: 1、用户模式→系统模式; 2、进入相关端口,配置IP地址; 3、开通相应vlan,设置vlanX、IP地址; 4、绑定相关端口,设置端口类型; 5、电脑设置IP&#…...

bash和dash的区别(及示例)

什么是bash、dash Bash(GNU Bourne-Again Shell)是许多Linux平台的内定Shell,事实上,还有许多传统UNIX上用的Shell,像tcsh、csh、ash、bsh、ksh等等。 GNU/Linux 操作系统中的 /bin/sh 本是 bash (Bourne-Again Shell) 的符号链接&#xff0…...

Java基础入门day65

day65 web项目 页面设计 仿照小米官网&#xff0c;将首页保存到本地为一个html页面&#xff0c;再将html页面保存为jsp页面&#xff0c;在项目中的web.xml文件中配置了欢迎页 <welcome-file-list><welcome-file>TypesServlet</welcome-file> </welcome-…...

解密制度的规定和解密工作的具体流程

解密制度是指对于某些敏感的文件或资料,经过一定的时间后,根据相关规定和程序,可以进行解密,解除文件的保密状态,使其可以被公众查阅或利用。解密制度的目的在于确保涉密信息的保密等级与其重要程度相适应,防止涉密信息的泄露和使用不当,同时促进信息公开、传播历史知识…...

实际中常用的网络相关命令

一、ping命令 ping是个使用频率极高的实用程序&#xff0c;主要用于确定网络的连通性。这对确定网络是否正确连接&#xff0c;以及网络连接的状况十分有用。 简单的说&#xff0c;ping就是一个测试程序&#xff0c;如果ping运行正确&#xff0c;大体上就可以排除网络访问层、网…...

机器学习补充

一、数据抽样 数据预处理阶段&#xff1a;对数据集进行抽样可以帮助减少数据量&#xff0c;加快模型训练的速度/减少计算资源的消耗&#xff0c;特别是当数据集非常庞大时&#xff0c;比如设置sample_rate0.8.平衡数据集&#xff1a;通过抽样平衡正负样本&#xff0c;提升模型…...

机器学习——RNN、LSTM

RNN 特点&#xff1a;输入层是层层相关联的&#xff0c;输入包括上一个隐藏层的输出h1和外界输入x2&#xff0c;然后融合一个张量&#xff0c;通过全连接得到h2&#xff0c;重复 优点&#xff1a;结构简单&#xff0c;参数总量少&#xff0c;在短序列任务上性能好 缺点&#x…...

Java项目学习(员工管理)

新增、员工列表、编辑员工整体代码流程与登录基本一致。 1、新增员工 RestController RequestMapping("/admin/employee")EmployeeController 类中使用了注解 RestController 用于构建 RESTful 风格的 API&#xff0c;其中每个方法的返回值会直接序列化为 JSON 或…...

视觉SLAM14精讲——相机与图像3.3

视觉SLAM14精讲 三维空间刚体运动1.0三维空间刚体运动1.1三维空间刚体运动1.2李群与李代数2.1相机与图像3.1相机与图像3.2 视觉SLAM14精讲——相机与图像3.3 视觉SLAM14精讲相机投影流程双目相机模型 相机投影流程 至此&#xff0c;有关相机三维刚体变换的所有因素已经汇集。…...

【路径规划】基于粒子群结合遗传算法实现机器人栅格地图路径规划

研究方法: 基于粒子群优化算法结合遗传算法的机器人栅格地图路径规划是一种智能算法的应用。它将粒子群优化算法和遗传算法相结合,以寻找最优路径规划解决方案。 研究路线: 理论研究:了解粒子群优化算法和遗传算法的基本原理,并掌握相关的路径规划理论知识。 算法设计:…...

内容安全复习 9 - 身份认证系统攻击与防御

文章目录 基于生物特征的身份认证系统概述基于生物特征的身份认证 人脸活体检测检测方法未解决问题 基于生物特征的身份认证系统概述 作用&#xff1a;判别用户的身份、保障信息系统安全。 是识别操作者身份的过程&#xff0c;要保证其**物理身份&#xff08;现实&#xff0…...

Python-gui开发之Pycharm+pyside6/Pyqt6环境搭建

Python-gui开发之Pycharm+pyside6/Pyqt6环境搭建 软件版本一、软件安装1、Python安装2、Pycharm安装3、pyside6或pyqt6安装①安装pyside6②安装PyQt6和pyqt6-tools二、Pycharm项目配置1、插件安装2、新建项目以及环境配置3、包管理安装三、在Pycharm中配置PySide61、pyside6 Qt…...

大数据开发语言Scala入门 ,如何入门?

Ai文章推荐 1 作为程序员&#xff0c;开发用过最好用的AI工具有哪些&#xff1f; 2 Github Copilot正版的激活成功&#xff0c;终于可以chat了 3 idea,pycharm等的ai assistant已成功激活 4 新手如何拿捏 Github Copilot AI助手&#xff0c;帮助你提高写代码效率 5 Jetbrains的…...

【人机交互 复习】第1章 人机交互概述

人机交互的知识点碎&#xff0c;而且都是文字&#xff0c;过一遍脑子里什么都留不下&#xff0c;但是背时间已经来不及了&#xff0c;最好还是找题要题感吧&#xff0c;加深印象才是做对文科的关键 一、概念 1.人机交互&#xff08;Human-Computer Interaction,HCI)&#xff1…...

HCIP-HarmonyOS Device Developer 课程大纲

一&#xff1a;系统及应用场景介绍 1 -&#xff08;3 课时&#xff09; - HarmonyOS 系统介绍&#xff1b;HarmonyOs 定义&#xff1b;HarmonyOS 特征&#xff1b; - 统一 OS&#xff0c;弹性部署&#xff1b;硬件互助&#xff0c;资源共享&#xff1b;一次开发&#xff0c;多…...

蓝桥杯 经典算法题 查找两个总和为特定值的索引

题目&#xff1a; 给定一个数组&#xff0c;找到两个总和为特定值的索引。 例如给定数组 [1, 2, 3, -2, 5, 7]&#xff0c;给定总和 7&#xff0c;则返回索引 [1, 4]。 若有多组符合情况则输出索引对中小索引最小的一组。 题解: 本题可以通过暴力枚举&#xff0c;枚举每两…...

Java | Leetcode Java题解之第169题多数元素

题目&#xff1a; 题解&#xff1a; class Solution {public int majorityElement(int[] nums) {int count 0;Integer candidate null;for (int num : nums) {if (count 0) {candidate num;}count (num candidate) ? 1 : -1;}return candidate;} }...

十大机器学习算法深入浅出

本栏目涉及对于回归算法、聚类算法、决策树、随机森林、神经网络、贝叶斯算法、支持向量机等十大机器学习算法的笔记 下面是笔记大纲&#xff0c;具体内容可查看**“十大机器学习算法深入浅出”**专栏&#xff0c;内容持续更新&#xff0c;欢迎订阅专栏和专注我&#xff01; 1…...

【论文笔记】Parameter-Effificient Transfer Learning for NLP

题目:Parameter-Effificient Transfer Learning for NLP 阅读 文章目录 0.摘要1.引言2 Adapter tuning for NLP3 实验3.1 参数/性能平衡3.2 讨论 4.相关工作 0.摘要 克服微调训练不高效的问题&#xff0c;增加一些adapter模块&#xff0c;思想就是固定原始的网络中的参数&…...

【Java学习笔记】Arrays类

Arrays 类 1. 导入包&#xff1a;import java.util.Arrays 2. 常用方法一览表 方法描述Arrays.toString()返回数组的字符串形式Arrays.sort()排序&#xff08;自然排序和定制排序&#xff09;Arrays.binarySearch()通过二分搜索法进行查找&#xff08;前提&#xff1a;数组是…...

CentOS下的分布式内存计算Spark环境部署

一、Spark 核心架构与应用场景 1.1 分布式计算引擎的核心优势 Spark 是基于内存的分布式计算框架&#xff0c;相比 MapReduce 具有以下核心优势&#xff1a; 内存计算&#xff1a;数据可常驻内存&#xff0c;迭代计算性能提升 10-100 倍&#xff08;文档段落&#xff1a;3-79…...

大模型多显卡多服务器并行计算方法与实践指南

一、分布式训练概述 大规模语言模型的训练通常需要分布式计算技术,以解决单机资源不足的问题。分布式训练主要分为两种模式: 数据并行:将数据分片到不同设备,每个设备拥有完整的模型副本 模型并行:将模型分割到不同设备,每个设备处理部分模型计算 现代大模型训练通常结合…...

《基于Apache Flink的流处理》笔记

思维导图 1-3 章 4-7章 8-11 章 参考资料 源码&#xff1a; https://github.com/streaming-with-flink 博客 https://flink.apache.org/bloghttps://www.ververica.com/blog 聚会及会议 https://flink-forward.orghttps://www.meetup.com/topics/apache-flink https://n…...

Hive 存储格式深度解析:从 TextFile 到 ORC,如何选对数据存储方案?

在大数据处理领域&#xff0c;Hive 作为 Hadoop 生态中重要的数据仓库工具&#xff0c;其存储格式的选择直接影响数据存储成本、查询效率和计算资源消耗。面对 TextFile、SequenceFile、Parquet、RCFile、ORC 等多种存储格式&#xff0c;很多开发者常常陷入选择困境。本文将从底…...

让回归模型不再被异常值“带跑偏“,MSE和Cauchy损失函数在噪声数据环境下的实战对比

在机器学习的回归分析中&#xff0c;损失函数的选择对模型性能具有决定性影响。均方误差&#xff08;MSE&#xff09;作为经典的损失函数&#xff0c;在处理干净数据时表现优异&#xff0c;但在面对包含异常值的噪声数据时&#xff0c;其对大误差的二次惩罚机制往往导致模型参数…...

WebRTC从入门到实践 - 零基础教程

WebRTC从入门到实践 - 零基础教程 目录 WebRTC简介 基础概念 工作原理 开发环境搭建 基础实践 三个实战案例 常见问题解答 1. WebRTC简介 1.1 什么是WebRTC&#xff1f; WebRTC&#xff08;Web Real-Time Communication&#xff09;是一个支持网页浏览器进行实时语音…...

C++实现分布式网络通信框架RPC(2)——rpc发布端

有了上篇文章的项目的基本知识的了解&#xff0c;现在我们就开始构建项目。 目录 一、构建工程目录 二、本地服务发布成RPC服务 2.1理解RPC发布 2.2实现 三、Mprpc框架的基础类设计 3.1框架的初始化类 MprpcApplication 代码实现 3.2读取配置文件类 MprpcConfig 代码实现…...

加密通信 + 行为分析:运营商行业安全防御体系重构

在数字经济蓬勃发展的时代&#xff0c;运营商作为信息通信网络的核心枢纽&#xff0c;承载着海量用户数据与关键业务传输&#xff0c;其安全防御体系的可靠性直接关乎国家安全、社会稳定与企业发展。随着网络攻击手段的不断升级&#xff0c;传统安全防护体系逐渐暴露出局限性&a…...

TJCTF 2025

还以为是天津的。这个比较容易&#xff0c;虽然绕了点弯&#xff0c;可还是把CP AK了&#xff0c;不过我会的别人也会&#xff0c;还是没啥名次。记录一下吧。 Crypto bacon-bits with open(flag.txt) as f: flag f.read().strip() with open(text.txt) as t: text t.read…...