文心一言 VS 讯飞星火 VS chatgpt (285)-- 算法导论21.2 4题
四、请给出图 21-3 所示操作序列的一个运行时间的渐近紧确界,假定使用链表表示和加权合并启发式策略。如果要写代码,请用go语言。
文心一言:
图 21-3 没有直接给出,但通常这种操作序列可能与某种数据结构(如并查集或加权并查集)的操作相关。在加权并查集(也称为加权并查集或带权并查集)中,我们通常执行两种基本操作:union(x, y, w)
(将包含 x
和 y
的两个集合合并,如果它们来自不同的集合,则添加权重 w
)和 find(x)
(查找 x
所在的集合的代表元素)。
使用链表表示和加权合并启发式策略(例如按秩合并或按大小合并)的加权并查集的运行时间通常取决于合并和查找操作的次数以及启发式策略的效率。
对于 union
操作,如果使用按大小合并(Union by Size)或按秩合并(Union by Rank),则每个 union
操作的时间复杂度大致为 O(α(n)),其中 α 是阿克曼(Ackermann)函数的反函数,它增长得非常慢,以至于对于实际应用来说,可以认为它是常数时间。
对于 find
操作,如果使用路径压缩(Path Compression)优化,则每个 find
操作的时间复杂度也是 O(α(n))。
因此,如果我们有一系列 union
和 find
操作,并且总共有 N 个这样的操作,则运行时间的渐近紧确界是 O(Nα(n)),其中 n 是元素的总数。然而,由于 α(n) 在实践中增长得非常慢,我们通常只关注线性部分,即 O(N)。
下面是一个简化的 Go 语言实现,它使用切片(在内部类似于链表)来表示并查集,并使用按大小合并和路径压缩策略:
package mainimport ("fmt"
)type UnionFind struct {parent []int // parent[i] 表示元素i的父节点,如果是根节点则为i自己size []int // size[i] 表示以i为根的集合的大小rank []int // rank[i] 表示以i为根的集合的秩(通常用于按秩合并)
}func NewUnionFind(n int) *UnionFind {parent := make([]int, n)size := make([]int, n)rank := make([]int, n)for i := 0; i < n; i++ {parent[i] = isize[i] = 1rank[i] = 0}return &UnionFind{parent, size, rank}
}func (uf *UnionFind) Find(x int) int {if uf.parent[x] != x {// 路径压缩uf.parent[x] = uf.Find(uf.parent[x])}return uf.parent[x]
}func (uf *UnionFind) Union(x, y int) {rootX := uf.Find(x)rootY := uf.Find(y)if rootX == rootY {return}// 假设我们使用按大小合并if uf.size[rootX] > uf.size[rootY] {uf.parent[rootY] = rootXuf.size[rootX] += uf.size[rootY]} else {uf.parent[rootX] = rootYuf.size[rootY] += uf.size[rootX]// 如果需要,也可以更新rank}
}func main() {// 示例使用uf := NewUnionFind(10)uf.Union(1, 2)uf.Union(3, 4)uf.Union(2, 5)fmt.Println(uf.Find(5)) // 应该输出与Find(1)或Find(2)相同的值
}
请注意,这个实现没有包括权重 w
,因为问题描述中没有明确提到如何使用它。如果 w
是重要的,并且需要用于合并操作中的某种决策,那么你可能需要修改 Union
方法以包含权重,并根据需要更新集合的大小或秩。
讯飞星火:
对于这个问题,首先我们需要理解题目的意思。图21-3所示的操作序列是一个链表操作序列,我们需要找出这个操作序列的运行时间的渐近紧确界。这是一个关于数据结构的问题,特别是链表和加权合并启发式策略。
在这个问题中,我们可以使用Go语言来实现一个链表,并使用加权合并启发式策略来优化链表的合并操作。这样,我们就可以得到操作序列的运行时间的渐近紧确界。
以下是Go语言实现的代码:
package mainimport ("fmt"
)type Node struct {value intnext *Node
}func NewNode(value int) *Node {return &Node{value: value}
}func mergeLists(list1, list2 *Node) *Node {dummy := &Node{}current := dummyfor list1 != nil && list2 != nil {if list1.value < list2.value {current.next = list1list1 = list1.next} else {current.next = list2list2 = list2.next}current = current.next}if list1 != nil {current.next = list1} else {current.next = list2}return dummy.next
}func main() {list1 := NewNode(1)list1.next = NewNode(3)list1.next.next = NewNode(5)list2 := NewNode(2)list2.next = NewNode(4)list2.next.next = NewNode(6)mergedList := mergeLists(list1, list2)for mergedList != nil {fmt.Println(mergedList.value)mergedList = mergedList.next}
}
这段代码首先定义了一个链表节点类型Node
,然后定义了一个创建新节点的函数NewNode
。接着定义了一个合并两个链表的函数mergeLists
,这个函数使用了加权合并启发式策略,即每次从两个链表中取出较小的元素添加到结果链表中。最后在main
函数中创建了两个链表并调用mergeLists
函数进行合并,然后打印出合并后的链表。
360智脑:
很抱歉,由于我无法直接查看图21-3或任何其他图像,因此我不能为您提供该图所示操作序列的渐近紧确界。如果您能提供更多关于操作序列或相关算法的详细信息,我可能能够帮助您分析其时间复杂度。
关于使用链表表示和加权合并启发式策略,这通常是指在数据结构如优先队列(也称为堆)中,其中元素根据某个优先级进行组织。加权合并启发式策略可能是指在合并两个优先队列时,对它们的大小或某种权重进行考虑以优化合并操作。但是,没有足够的信息来确定具体的时间复杂度。
如果您需要编写Go语言中的优先队列实现,可以考虑使用如下示例代码:
type Item struct {value interface{}priority float64
}type PriorityQueue struct {items []Item
}func (pq *PriorityQueue) Push(x interface{}) {item := &Item{value: x, priority: rand.Float64()}pq.items = append(pq.items, *item)
}func (pq *PriorityQueue) Pop() interface{} {item := pq.items[0]pq.items = pq.items[1:]return item.value
}func (pq *PriorityQueue) UpdatePriority(i, priority float64) {// Implement the weighted merge heuristic here.// This usually involves updating the priority of an existing item or merging two items.
}// Other methods for manipulating the queue could be added here.
请注意,上述代码仅提供了一个基本的优先队列结构,并没有实现加权合并启发式策略。根据您提供的信息,您需要实现UpdatePriority
方法来包含加权合并逻辑。这将涉及查找具有特定索引的项并更新其优先级,或者如果需要合并,则合并两个项并更新队列。
如果您有关于操作序列或加权合并策略的更多详细信息,请提供,以便我可以提供更具体的帮助。
智谱清言:
抱歉,由于您的请求中没有提供图21-3的详细信息,我无法给出具体的操作序列或其运行时间的渐近紧确界。此外,没有具体的操作序列,我也无法为您提供使用Go语言编写的代码。
如果您能提供更多关于图21-3的详细信息,例如其中的节点、边以及相关的操作,我将很乐意帮助您分析其运行时间并给出渐近紧确界。同时,如果您需要关于如何使用链表和加权合并启发式策略的代码示例,也请提供具体的需求,我会根据您的需求为您提供相应的代码示例。
天工:
为了回答这个问题,我们需要首先理解图 21-3 中的操作序列是什么,以及链表表示和加权合并启发式策略的具体含义。然而,由于我无法直接查看或访问外部资源(如图 21-3),我将假设我们正在讨论的是一种常见的数据结构操作,即并查集(Union-Find)操作,其中包括查找(Find)和合并(Union)操作。
并查集是一种用于处理不交集的数据结构,常用于解决连接问题。加权合并启发式策略是一种优化技术,它保证在执行合并操作时,总是将较小的树连接到较大的树上,这样可以减少树的高度,从而提高查找操作的效率。
在没有具体操作序列的情况下,我们可以给出一个一般性的渐近紧确界。对于一个包含n个元素的并查集,使用路径压缩和加权合并启发式策略,最坏情况下的查找和合并操作的时间复杂度可以被认为是接近O(α(n)),其中α(n)是阿克曼函数的反函数,它在实际中增长的空间非常缓慢,通常认为是一个很小的常数。
现在,如果我们需要用Go语言编写一个实现加权合并启发式策略的并查集的代码,以下是一个简单的示例:
type UnionFind struct {parent []int // parent[i]指向i的父节点size []int // size[i]表示以i为根的集合的大小
}func NewUnionFind(n int) *UnionFind {uf := &UnionFind{parent: make([]int, n),size: make([]int, n),}for i := 0; i < n; i++ {uf.parent[i] = iuf.size[i] = 1}return uf
}func (uf *UnionFind) Find(x int) int {if uf.parent[x] != x {uf.parent[x] = uf.Find(uf.parent[x]) // 路径压缩}return uf.parent[x]
}func (uf *UnionFind) Union(x, y int) {xRoot := uf.Find(x)yRoot := uf.Find(y)if xRoot == yRoot {return}// 加权合并启发式策略if uf.size[xRoot] < uf.size[yRoot] {uf.parent[xRoot] = yRootuf.size[yRoot] += uf.size[xRoot]} else {uf.parent[yRoot] = xRootuf.size[xRoot] += uf.size[yRoot]}
}
在这个代码中,NewUnionFind
函数初始化了一个包含n个元素的并查集,Find
函数实现了路径压缩的查找操作,Union
函数实现了加权合并启发式策略的合并操作。
请注意,这个代码示例是一个基础的实现,可能需要根据具体的操作序列和问题要求进行调整。此外,由于我没有具体的图 21-3 的操作序列,我无法提供更精确的时间复杂度分析。如果你能提供更多的上下文或具体的问题描述,我可以提供更加针对性的解答。
灵小智:
根据使用链表表示和加权合并启发式策略,图 21-3 所示操作序列的一个运行时间的渐近紧确界是 O(n log n),其中 n 为操作序列的长度。以下是用 Go 语言实现的代码示例:
{{ your Go code here }}
chatgpt:
给定图 21-3 中的操作序列,使用链表表示和加权合并启发式策略,下面是用 Go 语言实现的示例代码:
package mainimport ("fmt"
)type ListNode struct {val intrank intnext *ListNode
}type DisjointSet struct {headMap map[int]*ListNode
}func NewDisjointSet() *DisjointSet {return &DisjointSet{headMap: make(map[int]*ListNode),}
}func (ds *DisjointSet) MakeSet(x int) {node := &ListNode{val: x,rank: 0,next: nil,}ds.headMap[x] = node
}func (ds *DisjointSet) Find(x int) *ListNode {node := ds.headMap[x]if node == nil {return nil}for node.next != nil {node = node.next}return node
}func (ds *DisjointSet) Union(x, y int) {xRoot := ds.Find(x)yRoot := ds.Find(y)if xRoot == nil || yRoot == nil || xRoot.val == yRoot.val {return}if xRoot.rank < yRoot.rank {xRoot, yRoot = yRoot, xRoot}yRoot.next = xRootif xRoot.rank == yRoot.rank {xRoot.rank++}delete(ds.headMap, y)
}func main() {ds := NewDisjointSet()n := 10 // 节点个数for i := 1; i <= n; i++ { // 初始化每个节点为单独的集合ds.MakeSet(i)}opSeq := [][]int{{1, 2}, {3, 4}, {5, 6}, {7, 8}, {9, 10}, {2, 4}, {6, 8}, {1, 6},{3, 8}, {5, 10}, {2, 6}, {1, 3}, {5, 9}} // 操作序列for _, op := range opSeq {ds.Union(op[0], op[1])}fmt.Println("集合的最终状态:")for i := 1; i <= n; i++ {node := ds.Find(i)if node != nil {fmt.Printf("%d -> ", node.val)for node.next != nil {node = node.nextfmt.Printf("%d -> ", node.val)}fmt.Println()}}
}
运行该代码可以得到操作序列的结果。请注意,这只是一个示例实现,并不考虑性能优化。您可以根据需要进行调整和改进。
kimi:
图 21-3 没有直接提供在这里,但根据描述,我们可以讨论一个典型的操作序列,其中包含 MAKE-SET
、FIND-SET
和 UNION
操作,使用链表表示和加权合并启发式策略。
在这种场景下,渐近紧确界(Asymptotic Tight Bound)是指操作序列的总时间复杂度的上限。以下是每种操作的时间复杂度分析:
-
MAKE-SET:创建单个元素的集合。这个操作是 O(1),因为它只涉及分配内存和初始化。
-
FIND-SET:查找节点的根节点,使用路径压缩优化。尽管路径压缩会导致多个父节点更新,但摊还分析表明,每个节点的更新操作的摊还代价是 O(1)。
-
UNION:合并两个集合。在加权合并启发式下,合并操作的摊还时间上界是 O(log n),其中 n 是涉及合并的树中元素的数量。
现在,假设我们有一个包含 n 个元素的操作序列,其中包含 m 个 MAKE-SET
、q 个 FIND-SET
和 r 个 UNION
操作。那么,操作序列的总时间复杂度将是:
MAKE-SET
操作的总时间:m * O(1) = O(m)FIND-SET
操作的总时间:q * O(1) = O(q)UNION
操作的总时间:r * O(log n) = O(r * log n)
因此,整个操作序列的总时间复杂度是 O(m + q + r * log n)。
如果我们想要一个渐近紧确界,我们需要考虑最坏情况下的 m、q 和 r 的值。在最坏的情况下,每个元素都会被创建一次(m = n),每个元素都会被查找一次(q = n),并且每次 UNION
操作都会合并两个集合(r 取决于操作序列的具体模式,但可以认为是 n - k,其中 k 是最终合并后的连通分量的数量)。
因此,最坏情况下的渐近紧确界是 O(n + n + (n - k) * log n) = O(n + nlog n - klog n)。由于 k <= n,我们可以简化这个表达式为 O(2nlog n)。
以下是使用 Go 语言实现的简单示例代码,用于演示操作的时间复杂度:
package mainimport ("fmt""math"
)// 假设 SetNode 和相关操作已经定义func main() {n := 10 // 元素数量m := n // MAKE-SET 操作数量q := n // FIND-SET 操作数量r := n - 1 // UNION 操作数量(初始集合数量减1)// 计算操作序列的总时间复杂度totalComplexity := m + q + r*math.Log2(float64(n))fmt.Printf("The total time complexity of the operation sequence is O(%f)\n", totalComplexity)
}
请注意,这个示例仅用于演示如何计算操作序列的总时间复杂度,并提供一个渐
混元:
由于问题中提到了“图 21-3”,但是在这个文本交互中无法显示图片,我假设你指的是在《算法导论》这本书中的习题 21.3-8。这个题目要求分析使用链表表示和加权合并启发式策略的合并操作的运行时间。
加权合并启发式策略(Weighted Union Heuristic)是一种用于优化并查集(Union-Find)数据结构的方法,它通过在合并两个集合时考虑集合的大小来避免树的不平衡。具体来说,当我们合并两个集合时,我们将较小的集合连接到较大的集合上,这样可以保持树的深度较小。
对于每个操作(union 或 find-set),加权合并启发式策略的运行时间是 O(log n),其中 n 是元素的数量。这是因为每次合并操作后,较大集合的大小至少是较小集合的两倍,这意味着集合的数量大约会以对数的速度减少。
下面是用 Go 语言实现的并查集的基本操作,包括初始化、查找和合并:
package mainimport "fmt"type UnionFind struct {parent []intsize []int
}func NewUnionFind(n int) *UnionFind {parent := make([]int, n)size := make([]int, n)for i := range parent {parent[i] = isize[i] = 1}return &UnionFind{parent: parent, size: size}
}func (uf *UnionFind) FindSet(x int) int {if uf.parent[x] != x {uf.parent[x] = uf.FindSet(uf.parent[x]) // 路径压缩}return uf.parent[x]
}func (uf *UnionFind) Union(x, y int) {rootX := uf.FindSet(x)rootY := uf.FindSet(y)if rootX == rootY {return}// 加权合并启发式策略if uf.size[rootX] > uf.size[rootY] {uf.parent[rootY] = rootXuf.size[rootX] += uf.size[rootY]} else {uf.parent[rootX] = rootYuf.size[rootY] += uf.size[rootX]}
}func main() {uf := NewUnionFind(10)uf.Union(1, 2)uf.Union(3, 4)uf.Union(2, 3)fmt.Println(uf.FindSet(1)) // 应该输出根节点的索引fmt.Println(uf.FindSet(4)) // 应该输出根节点的索引
}
在这个实现中,我们使用了路径压缩(Path Compression)技术来进一步优化查找操作,使得查找操作的平均时间复杂度接近 O(1)。结合加权合并启发式策略,整个并查集的运行时间复杂度得到了很好的优化。
相关文章:

文心一言 VS 讯飞星火 VS chatgpt (285)-- 算法导论21.2 4题
四、请给出图 21-3 所示操作序列的一个运行时间的渐近紧确界,假定使用链表表示和加权合并启发式策略。如果要写代码,请用go语言。 文心一言: 图 21-3 没有直接给出,但通常这种操作序列可能与某种数据结构(如并查集或…...

基于springboot实现影院订票系统项目【项目源码+论文说明】计算机毕业设计
基于springboot实现影院订票系统演示 摘要 现代经济快节奏发展以及不断完善升级的信息化技术,让传统数据信息的管理升级为软件存储,归纳,集中处理数据信息的管理方式。本影院订票系统就是在这样的大环境下诞生,其可以帮助管理者在…...
Linux 常用命令合集
进入root模式 su -> 回车 -> 输入root用户密码关闭系统 方法1: shutdown -h now 方法2: init 0 方法3: telinit 0按预定时间关闭系统 shutdown -h hours:minutes &取消按预定时间关闭系统 shutdown -c重启 shutdown -r now重启…...

Vue3插件安装
一、volar插件安装 volar:Vue文件的语法提示和高亮提醒。volar已经更名为Vue - Official,其安装步骤如下。 (1)打开vscode,点击扩展面板,在搜索窗口中输入volar,选择Vue - Official进行安装。 (2࿰…...

Redis精要
一、什么是缓存击穿、缓存穿透、缓存雪崩? 缓存穿透 【针对大量非法访问的请求,缓存中没有,直接访问DB】 缓存穿透指的查询缓存和数据库中都不存在的数据,这样每次请求直接打到数据库,就好像缓存不存在 一样。 对于系…...

国产24位I2S输入+192kHz立体声DAC音频数模转换器CJC4344
CJC4344是一款立体声数模转换芯片,内含插值滤波器、multi bit数模转换器、输出模拟滤波器。CJC4344系列支持大部分的音频数据格式。CJC4344基于一个带线性模拟低通滤波器的四阶multi-bitΔ-Σ调制器,而且本芯片可以通过检测信号频率和主时钟频率…...

UniApp 开发微信小程序教程(一):准备工作和环境搭建,项目结构和配置
文章目录 一、准备工作和环境搭建1. 安装 HBuilderX步骤: 2. 注册微信开发者账号步骤: 3. 创建 UniApp 项目步骤: 二、项目结构和配置1. UniApp 项目结构2. 配置微信小程序修改 manifest.json修改 pages.json 3. 添加首页文件index.vue 示例&…...

[WTL/Win32]_[中级]_[MVP架构在实际项目中的应用]
场景 在开发Windows和macOS的界面软件时,Windows用的是WTL/Win32技术,而macOS用的是Cocoa技术。而两种技术的本地语言一个主打是C,另一个却是Object-c。界面软件的源码随着项目功能增多而增多,这就会给同步Windows和macOS的功能造成很大负担…...

《Windows API每日一练》5.2 按键消息
上一节中我们得知,Windows系统的按键消息有很多类型,大部分按键消息都是由Windows系统的默认窗口过程处理的,我们自己只需要处理少数几个按键消息。这一节我们将详细讲述Windows系统的所有按键消息及其处理方式。 本节必须掌握的知识点&…...
adb 截屏和录屏命令
adb 录屏命令 screenrecord 简介 screenrecord 是一个 shell 命令 支持 Android 4.4(API level 19)以上 支持视频格式: mp4 一些限制 某些设备可能无法直接录制,原因是分辨率太高,如果遇到此类问题,请试着指定较低的分辨率 不支持录制过程中屏幕旋转,如果录制…...

springboot相关的一些知识
SpringBoot可以同时处理多少请求 SpringBoot默认的内嵌容器是Tomcat,所以SpringBoot可以同时处理多少请求取决于Tomcat。 SpringBoot中处理请求数量相关的参数有四个: server.tomcat.thread.min-spare:最少的工作线程数,默认大小…...

DP:完全背包+多重背包问题
完全背包和01背包的区别就是:可以多次选 一、完全背包(模版) 【模板】完全背包_牛客题霸_牛客网 #include <iostream> #include<string.h> using namespace std; const int N1001; int n,V,w[N],v[N],dp[N][N]; //dp[i][j]表示…...
购物返利系统的安全性:防范欺诈与数据保护
购物返利系统的安全性:防范欺诈与数据保护 大家好,我是免费搭建查券返利机器人省钱赚佣金就用微赚淘客系统3.0的小编,也是冬天不穿秋裤,天冷也要风度的程序猿! 购物返利系统作为一种电子商务模式,通过向消…...

从WebM到MP3:利用Python和wxPython提取音乐的魔法
前言 有没有遇到过这样的问题:你有一个包含多首歌曲的WebM视频文件,但你只想提取其中的每一首歌曲,并将它们保存为单独的MP3文件?这听起来可能有些复杂,但借助Python和几个强大的库,这个任务变得异常简单。…...

图片转pdf,图片转pdf在线转换,在线图片转pdf
图片转PDF,听起来似乎是一个简单的操作,但实际上,它涉及到许多细节和技巧。有时候我们需要将图片转换为PDF格式,以便于分享、打印或保存。那么,如何将图片转换成PDF呢?接下来,我将为您详细介绍几…...
SpringBoot3使用Swagger3
SpringBoot3使用Swagger3 项目中的后端接口进行简单的前端展示一、依赖引入二、快速启动1.在application.yml中配置2.或者properties文件,则配置3.启动项目访问swagger 三、使用注解标注接口Swagger配置文件Swagger 注解迁移举例五种常用ApiApiOperationApiImplicitParamApiMod…...

【51单片机基础教程】点亮led
文章目录 前言51单片机点亮LED的原理硬件部分软件部分51单片机的寄存器编程步骤proteus仿真点亮一个led 点亮多个ledproteus仿真代码 流水灯 总结 前言 单片机(Microcontroller Unit, MCU)是一种集成电路,广泛应用于各种电子产品中。作为嵌入…...

Docker之overlay2的迁移
原因 docker默认将文件及其容器放置在了系统盘的挂载区内,如果长期使用会发现系统挂载区被overlay2挤爆了,因此在一开始我们将其迁移在大容量外挂磁盘上,就可以避免系统盘被挤爆,放心使用. 具体操作 # 停止容器 systemctl stop docker# 修改容器配置,…...
CentOS中的rename命令
目录 CentOS中的rename命令基本语法使用示例注意事项安装prename CentOS中的rename命令 在CentOS系统中,rename命令通常是指util-linux包中提供的版本,它用于批量重命名文件,但与Perl版本的rename命令相比,功能较为简单ÿ…...

redis.conf 参数详解,方便进行性能优化配置
以下是redis.conf中一些常见参数的详细说明: daemonize:是否以后台进程运行,默认为no; pidfile:如以后台进程运行,则需指定一个pid,默认为/var/run/redis.pid;bind:绑定主…...

LeetCode - 394. 字符串解码
题目 394. 字符串解码 - 力扣(LeetCode) 思路 使用两个栈:一个存储重复次数,一个存储字符串 遍历输入字符串: 数字处理:遇到数字时,累积计算重复次数左括号处理:保存当前状态&a…...
linux 下常用变更-8
1、删除普通用户 查询用户初始UID和GIDls -l /home/ ###家目录中查看UID cat /etc/group ###此文件查看GID删除用户1.编辑文件 /etc/passwd 找到对应的行,YW343:x:0:0::/home/YW343:/bin/bash 2.将标红的位置修改为用户对应初始UID和GID: YW3…...
工业自动化时代的精准装配革新:迁移科技3D视觉系统如何重塑机器人定位装配
AI3D视觉的工业赋能者 迁移科技成立于2017年,作为行业领先的3D工业相机及视觉系统供应商,累计完成数亿元融资。其核心技术覆盖硬件设计、算法优化及软件集成,通过稳定、易用、高回报的AI3D视觉系统,为汽车、新能源、金属制造等行…...

项目部署到Linux上时遇到的错误(Redis,MySQL,无法正确连接,地址占用问题)
Redis无法正确连接 在运行jar包时出现了这样的错误 查询得知问题核心在于Redis连接失败,具体原因是客户端发送了密码认证请求,但Redis服务器未设置密码 1.为Redis设置密码(匹配客户端配置) 步骤: 1).修…...
【生成模型】视频生成论文调研
工作清单 上游应用方向:控制、速度、时长、高动态、多主体驱动 类型工作基础模型WAN / WAN-VACE / HunyuanVideo控制条件轨迹控制ATI~镜头控制ReCamMaster~多主体驱动Phantom~音频驱动Let Them Talk: Audio-Driven Multi-Person Conversational Video Generation速…...

算法岗面试经验分享-大模型篇
文章目录 A 基础语言模型A.1 TransformerA.2 Bert B 大语言模型结构B.1 GPTB.2 LLamaB.3 ChatGLMB.4 Qwen C 大语言模型微调C.1 Fine-tuningC.2 Adapter-tuningC.3 Prefix-tuningC.4 P-tuningC.5 LoRA A 基础语言模型 A.1 Transformer (1)资源 论文&a…...

若依登录用户名和密码加密
/*** 获取公钥:前端用来密码加密* return*/GetMapping("/getPublicKey")public RSAUtil.RSAKeyPair getPublicKey() {return RSAUtil.rsaKeyPair();}新建RSAUti.Java package com.ruoyi.common.utils;import org.apache.commons.codec.binary.Base64; im…...
机器学习的数学基础:线性模型
线性模型 线性模型的基本形式为: f ( x ) ω T x b f\left(\boldsymbol{x}\right)\boldsymbol{\omega}^\text{T}\boldsymbol{x}b f(x)ωTxb 回归问题 利用最小二乘法,得到 ω \boldsymbol{\omega} ω和 b b b的参数估计$ \boldsymbol{\hat{\omega}}…...
python打卡第47天
昨天代码中注意力热图的部分顺移至今天 知识点回顾: 热力图 作业:对比不同卷积层热图可视化的结果 def visualize_attention_map(model, test_loader, device, class_names, num_samples3):"""可视化模型的注意力热力图,展示模…...
AT模式下的全局锁冲突如何解决?
一、全局锁冲突解决方案 1. 业务层重试机制(推荐方案) Service public class OrderService {GlobalTransactionalRetryable(maxAttempts 3, backoff Backoff(delay 100))public void createOrder(OrderDTO order) {// 库存扣减(自动加全…...