当前位置: 首页 > news >正文

MYSQL通过EXPLAIN关键字来分析SQL查询的执行计划,判断是否命中了索引

在MySQL中,你可以通过EXPLAIN关键字来分析SQL查询的执行计划,从而判断是否命中了索引。

  1. 准备查询语句: 首先,你需要一个带有WHERE子句的SELECT查询,因为WHERE子句中的条件通常与索引相关联。例如:
  SELECT * FROM your_table WHERE column1 = 'value1' AND column2 = 'value2';
  1. 添加EXPLAIN: 在查询语句前面加上EXPLAIN关键字来查看执行计划:
  EXPLAIN SELECT * FROM your_table WHERE column1 = 'value1' AND column2 = 'value2';
  1. 解析结果: EXPLAIN返回的结果包含多列,其中与索引相关的有:
  • id:查询中的序列号,表示查询的执行顺序。 select_type:查询类型,如SIMPLE、PRIMARY、SUBQUERY等。
  • table:查询涉及的表。
  • type:访问类型,如ALL、INDEX、range、ref等。如果看到type是index或const,通常意味着索引被使用了。
  • possible_keys:查询中可以使用的索引。 key:实际使用的索引,如果为空,说明没有使用索引。
  • key_len:使用索引的长度,如果索引包含多个列,这可能是部分长度。
  • rows:预计要检查的行数,如果使用了索引,这个数字通常会比较小。
  1. 分析结果:
  • 如果type列显示const,表示MySQL使用了唯一索引并直接找到了一行。
  • 如果显示eq_ref,表示使用了主键或唯一索引的全部。
  • ref通常意味着使用了非唯一索引或部分索引。
  • range表示使用了索引范围扫描,如 BETWEEN 或 IN。
  • index或all则表示全表扫描,没有使用索引。

相关文章:

MYSQL通过EXPLAIN关键字来分析SQL查询的执行计划,判断是否命中了索引

在MySQL中,你可以通过EXPLAIN关键字来分析SQL查询的执行计划,从而判断是否命中了索引。 准备查询语句: 首先,你需要一个带有WHERE子句的SELECT查询,因为WHERE子句中的条件通常与索引相关联。例如: SELECT …...

clean code-代码整洁之道 阅读笔记(第十二章)

第十二章 系统 12.1 通过选进设计达到整洁目的 Kent Beck关于简单设计的四条规则,对于创建具有良好设计的软件有着莫大的帮助。 据Kent所述,只要遵循以下规则,设计就能变得"简单":运行所有测试;不可重复&…...

FFmpeg YUV编码为H264

使用FFmpeg库把YUV420P文件编码为H264文件&#xff0c;FFmpeg版本为4.4.2-0。 需要yuv测试文件的&#xff0c;可以从我上传的MP4文件中用ffmpeg提取&#xff0c;命令如下&#xff1a; ffmpeg -i <input.mp4> -pix_fmt yuv420p <output.yuv> 代码如下&#xff1a;…...

【C语言】顺序表(上卷)

什么是数据结构&#xff1f; 数据结构是由“数据”和“结构”两词组合而来的。 数据需要管理。数据结构就是计算机存储、组织数据的方式。比如一个班级就是一个结构&#xff0c;管理的就是班级里的学生。如果我们要找三年2班的同学李华&#xff0c;就可以直接去三年2班找而不…...

Luma AI如何注册:文生视频领域的新星

文章目录 Luma AI如何注册&#xff1a;文生视频领域的新星一、Luma 注册方式二、Luma 的效果三、Luma 的优势四、Luma 的功能总结 Luma AI如何注册&#xff1a;文生视频领域的新星 近年来&#xff0c;Luma AI 凭借其在文生视频领域的创新技术&#xff0c;逐渐成为行业的新星。…...

一站式实时数仓Hologres整体能力介绍

讲师&#xff1a;阿里云Hologres PD丁烨 一、产品定位 随着技术的进步&#xff0c;大数据正从规模化转向实时化处理。用户对传统的T1分析已不满足&#xff0c;期望获得更高时效性的计算和分析能力。例如实时大屏&#xff0c;城市大脑的交通监控、风控和实时的个性化推荐&…...

如何在 Windows 上安装 Docker Desktop

如何在 Windows 上安装 Docker Desktop Docker 是一个开放平台&#xff0c;用于开发、部署和运行应用程序。Docker Desktop 是 Docker 在 Windows 和 macOS 上的官方客户端&#xff0c;它使得开发者能够轻松地在本地环境中构建、运行和共享容器化应用程序。本文将详细介绍如何…...

WPF由文本框输入的内容动态渲染下拉框

在做项目过程中&#xff0c;需要扫码枪扫描快递单号或者手动输入快递单号时&#xff0c;自动检索该单号是哪个快递公司的&#xff0c;下拉框中自动带出该单号的快递公司。当输入的快递单号不存在时&#xff0c;将数据库中所有快递公司都带出 效果&#xff1a; 通过输入的快递单…...

RPCMon:一款基于ETW的RPC监控工具

关于RPCMon RPCMon是一款基于事件跟踪的WindowsRPC监控工具&#xff0c;该工具是一款GUI工具&#xff0c;可以帮助广大研究人员通过ETW&#xff08;Event Tracing for Windows&#xff09;扫描RPC通信。 RPCMon能够为广大研究人员提供进程之间RPC通信的高级视图&#xff0c;该…...

【odoo】常用的字符转义:“>“,“<“,““,“/“等

概要 字符转义是指在编写代码或处理文本数据时&#xff0c;将特殊字符转换为另一种形式&#xff0c;以便在特定的上下文中正确解析和处理这些字符。 内容 特殊字符描述XML转义表示法&和符号&amp;<小于符号<>大于符号>"双引号&quot;单引号&ap…...

李宏毅深度学习项目——HW1个人笔记

视频链接 PDF链接 googleColab链接 GoogleColab是一个免费的jupyter notebook&#xff0c;可以用上面的gpu资源进行训练 题目 通过前两天的数据&#xff0c;预测第三天某个人感染新冠的概率 范例 导包 # Numerical Operations import math import numpy as np# Reading/Wr…...

3D Gaussian Splatting Windows安装

0.安装C++ 编译器 https://aka.ms/vs/17/release/vs_buildtools.exe 1.下载源码 git clone https://github.com/graphdeco-inria/gaussian-splatting --recursive 2.安装cuda NVIDIA GPU Computing Toolkit CUDA Toolkit Archive | NVIDIA Developer 3.安装COLMAP...

人脸识别——可解释的人脸识别(XFR)人脸识别模型是根据什么来识别个人的

可解释性人脸识别&#xff08;XFR&#xff09;&#xff1f; 人脸识别有一个任务叫1:N&#xff08;识别&#xff09;。这个任务将一个人的照片与N张注册照片进行比较&#xff0c;找出相似度最高的人。 这项任务用于刑事调查和出入境点。在犯罪调查中&#xff0c;任务从监控摄像…...

仓库管理系统的设计

管理员账户功能包括&#xff1a;系统首页&#xff0c;个人中心&#xff0c;管理员管理&#xff0c;公告管理&#xff0c;物资管理&#xff0c;基础数据管理&#xff0c;用户管理 用户账户功能包括&#xff1a;系统首页&#xff0c;个人中心&#xff0c;公告管理&#xff0c;物…...

最火AI角色扮演流量已达谷歌搜索20%!每秒处理2万推理请求,Transformer作者公开优化秘诀

卡奥斯智能交互引擎是卡奥斯基于海尔近40年工业生产经验积累和卡奥斯7年工业互联网平台建设的最佳实践&#xff0c;基于大语言模型和RAG技术&#xff0c;集合海量工业领域生态资源方优质产品和知识服务&#xff0c;旨在通过智能搜索、连续交互&#xff0c;实时生成个性化的内容…...

MySQL:MySQL分组排序函数rank()、row_number()、dense_rank()与partition by结合使用

一、前言 在 MySQL 中&#xff0c;虽然标准的 SQL 函数 RANK(), ROW_NUMBER(), 和 DENSE_RANK() 是 SQL 标准的一部分&#xff0c;但早期的 MySQL 版本并不直接支持这些窗口函数。然而&#xff0c;从 MySQL 8.0 开始&#xff0c;这些函数被引入以支持窗口函数&#xff08;也称为…...

opencv c++ 检测图像尺寸大小,标注轮廓

1. 项目背景 本项目旨在开发一个图像处理程序&#xff0c;通过使用计算机视觉技术&#xff0c;能够自动检测图像中物体的尺寸并进行分类。项目利用了开源的计算机视觉库 OpenCV&#xff0c;实现了图像的灰度处理、二值化、轮廓检测、边界框绘制以及尺寸分类等功能。通过这些功…...

Python数据可视化基础:使用Matplotlib绘制图表

Python数据可视化基础&#xff1a;使用Matplotlib绘制图表 数据可视化是数据分析中的重要环节&#xff0c;它可以帮助我们更直观地理解数据。Python作为一门强大的编程语言&#xff0c;提供了多种库来支持数据可视化&#xff0c;其中Matplotlib是最为流行和功能丰富的库之一。…...

Java开发接口设计的原则

在现代软件开发实践中&#xff0c;接口设计扮演着至关重要的角色。它不仅关乎代码的结构和未来的可维护性&#xff0c;还直接影响到软件系统的灵活性和扩展性。本文将通过实例详解几个核心的接口设计原则&#xff0c;帮助开发者更好地编写和管理接口&#xff0c;从而提升软件的…...

[火灾警报系统]yolov5_7.0-pyside6火焰烟雾识别源码

国内每年都会发生大大小小的火灾&#xff0c;造成生命、财产的损失。但是很多火灾如果能够早期发现&#xff0c;并及时提供灭火措施&#xff0c;将会大大较小损失。本套源码采用yolov5-7.0目标检测算法结合pyside6可视化界面源码&#xff0c;当检测到火灾时&#xff0c;能否发出…...

RocketMQ延迟消息机制

两种延迟消息 RocketMQ中提供了两种延迟消息机制 指定固定的延迟级别 通过在Message中设定一个MessageDelayLevel参数&#xff0c;对应18个预设的延迟级别指定时间点的延迟级别 通过在Message中设定一个DeliverTimeMS指定一个Long类型表示的具体时间点。到了时间点后&#xf…...

循环冗余码校验CRC码 算法步骤+详细实例计算

通信过程&#xff1a;&#xff08;白话解释&#xff09; 我们将原始待发送的消息称为 M M M&#xff0c;依据发送接收消息双方约定的生成多项式 G ( x ) G(x) G(x)&#xff08;意思就是 G &#xff08; x ) G&#xff08;x) G&#xff08;x) 是已知的&#xff09;&#xff0…...

oracle与MySQL数据库之间数据同步的技术要点

Oracle与MySQL数据库之间的数据同步是一个涉及多个技术要点的复杂任务。由于Oracle和MySQL的架构差异&#xff0c;它们的数据同步要求既要保持数据的准确性和一致性&#xff0c;又要处理好性能问题。以下是一些主要的技术要点&#xff1a; 数据结构差异 数据类型差异&#xff…...

相机Camera日志分析之三十一:高通Camx HAL十种流程基础分析关键字汇总(后续持续更新中)

【关注我,后续持续新增专题博文,谢谢!!!】 上一篇我们讲了:有对最普通的场景进行各个日志注释讲解,但相机场景太多,日志差异也巨大。后面将展示各种场景下的日志。 通过notepad++打开场景下的日志,通过下列分类关键字搜索,即可清晰的分析不同场景的相机运行流程差异…...

成都鼎讯硬核科技!雷达目标与干扰模拟器,以卓越性能制胜电磁频谱战

在现代战争中&#xff0c;电磁频谱已成为继陆、海、空、天之后的 “第五维战场”&#xff0c;雷达作为电磁频谱领域的关键装备&#xff0c;其干扰与抗干扰能力的较量&#xff0c;直接影响着战争的胜负走向。由成都鼎讯科技匠心打造的雷达目标与干扰模拟器&#xff0c;凭借数字射…...

python报错No module named ‘tensorflow.keras‘

是由于不同版本的tensorflow下的keras所在的路径不同&#xff0c;结合所安装的tensorflow的目录结构修改from语句即可。 原语句&#xff1a; from tensorflow.keras.layers import Conv1D, MaxPooling1D, LSTM, Dense 修改后&#xff1a; from tensorflow.python.keras.lay…...

【从零学习JVM|第三篇】类的生命周期(高频面试题)

前言&#xff1a; 在Java编程中&#xff0c;类的生命周期是指类从被加载到内存中开始&#xff0c;到被卸载出内存为止的整个过程。了解类的生命周期对于理解Java程序的运行机制以及性能优化非常重要。本文会深入探寻类的生命周期&#xff0c;让读者对此有深刻印象。 目录 ​…...

scikit-learn机器学习

# 同时添加如下代码, 这样每次环境(kernel)启动的时候只要运行下方代码即可: # Also add the following code, # so that every time the environment (kernel) starts, # just run the following code: import sys sys.path.append(/home/aistudio/external-libraries)机…...

【MATLAB代码】基于最大相关熵准则(MCC)的三维鲁棒卡尔曼滤波算法(MCC-KF),附源代码|订阅专栏后可直接查看

文章所述的代码实现了基于最大相关熵准则(MCC)的三维鲁棒卡尔曼滤波算法(MCC-KF),针对传感器观测数据中存在的脉冲型异常噪声问题,通过非线性加权机制提升滤波器的抗干扰能力。代码通过对比传统KF与MCC-KF在含异常值场景下的表现,验证了后者在状态估计鲁棒性方面的显著优…...

论文阅读笔记——Muffin: Testing Deep Learning Libraries via Neural Architecture Fuzzing

Muffin 论文 现有方法 CRADLE 和 LEMON&#xff0c;依赖模型推理阶段输出进行差分测试&#xff0c;但在训练阶段是不可行的&#xff0c;因为训练阶段直到最后才有固定输出&#xff0c;中间过程是不断变化的。API 库覆盖低&#xff0c;因为各个 API 都是在各种具体场景下使用。…...