AI学习指南机器学习篇-KNN的优缺点
AI学习指南机器学习篇-KNN的优缺点
在机器学习领域中,K最近邻(K-Nearest Neighbors,KNN)算法是一种十分常见的分类和回归方法之一。它的原理简单易懂,但在实际应用中也存在一些优缺点。本文将重点探讨KNN算法的优缺点,并结合具体示例来说明KNN算法在处理异常值敏感、计算复杂度高等方面的问题。
KNN算法简介
KNN算法是一种基于实例的学习方法,它利用已知类别标记的训练数据集,在分类时根据输入的待分类数据的特征,通过计算它与训练集中每个样本的距离,选取K个距离最近的样本作为邻居,然后通过投票法来决定待分类数据的类别。在回归问题中,KNN算法则是取K个最近邻居的平均值来进行预测。
KNN算法的优点
KNN算法具有以下优点:
1. 理论简单,易于理解和实现
KNN算法的原理非常简单直观,不需要进行模型训练,因此易于理解和实现。这使得KNN成为了众多机器学习算法中的入门级算法。
2. 适用于多分类问题
KNN算法在处理多分类问题时表现较为出色,因为它可以直接利用训练样本中的信息进行分类。
3. 适用于非线性数据
KNN算法对于非线性数据具有较强的分类能力,可以在较为复杂的数据集上取得较好的分类效果。
KNN算法的缺点
然而,KNN算法也存在一些较为明显的缺点:
1. 对异常值敏感
KNN算法是一种基于距离的方法,在距离计算时对异常值非常敏感。这意味着如果训练集中存在一些离群点(异常值),它们可能会对KNN算法的分类结果产生较大的影响。
为了更好地说明这一点,我们可以通过一个具体的示例来进行说明。假设我们有一个二维的数据集,其中大部分点聚集在一个区域内,但有一些极端的点则远离了其他点。如果我们使用KNN算法对这个数据集进行分类,那么这些离群点可能会影响KNN算法的分类结果,使得KNN算法倾向于将新样本分到与离群点相对应的类别中。
2. 计算复杂度高
另一个值得关注的问题是KNN算法的计算复杂度较高。因为在分类时需要计算待分类样本与训练集中每个样本的距离,所以当训练集规模较大时,计算量将会成指数增长。特别是在高维数据集上,由于维度灾难的影响,KNN算法的计算复杂度将会更加突出。
如何处理KNN算法的缺点
针对KNN算法的缺点,我们可以采取一些方法来加以应对。
1. 异常值处理
在处理数据集时,我们可以先对数据进行预处理,通过检测和处理异常值来减小它们对KNN算法的影响。一种常见的方法是利用离群点检测算法(如LOF、Isolation Forest等)来识别和处理异常值。
举一个具体的例子。如果我们使用KNN算法对一个包含离群点的数据集进行分类,那么离群点可能对KNN算法的分类结果产生负面影响。我们可以使用Isolation Forest算法来识别和移除这些离群点,从而提高KNN算法的分类准确度。
from sklearn.neighbors import LocalOutlierFactor
from sklearn.datasets import make_blobs
import numpy as np# 生成一个带有离群点的数据集
X, _ = make_blobs(n_samples=300, centers=1, cluster_std=1, random_state=0)
outliers = np.random.randint(0, 300, 20)
X[outliers] = np.random.random((20, 2)) * 20# 使用LOF算法识别离群点
lof = LocalOutlierFactor(n_neighbors=20, contamination=0.1)
y_pred = lof.fit_predict(X)
X_clean = X[y_pred > 0]# 使用KNN算法对处理后的数据集进行分类
from sklearn.neighbors import KNeighborsClassifier
from sklearn.model_selection import train_test_split
from sklearn.metrics import accuracy_scoreX_train, X_test, y_train, y_test = train_test_split(X_clean, y_pred[y_pred > 0], test_size=0.2, random_state=42)
knn = KNeighborsClassifier(n_neighbors=5)
knn.fit(X_train, y_train)
y_pred = knn.predict(X_test)
print("处理离群点后的KNN分类准确度:", accuracy_score(y_test, y_pred))
2. 降维处理
另一种缓解KNN算法计算复杂度的方法是对高维数据进行降维处理,以减小特征空间的维度。常见的降维方法包括主成分分析(PCA)和t-分布邻域嵌入(t-SNE)等。
举一个具体的例子。对于一个高维数据集,如果我们直接使用KNN算法进行分类,将面临维度灾难的问题,这会导致KNN算法的计算复杂度成指数增长。我们可以先使用PCA算法对数据进行降维处理,然后再利用KNN算法进行分类,以提高KNN算法的效率。
from sklearn.decomposition import PCA
from sklearn.datasets import load_iris# 加载鸢尾花数据集
data = load_iris()
X, y = data.data, data.target# 使用PCA算法进行降维处理
pca = PCA(n_components=2)
X_pca = pca.fit_transform(X)# 使用KNN算法对处理后的数据集进行分类
from sklearn.neighbors import KNeighborsClassifier
from sklearn.model_selection import train_test_split
from sklearn.metrics import accuracy_scoreX_train, X_test, y_train, y_test = train_test_split(X_pca, y, test_size=0.2, random_state=42)
knn = KNeighborsClassifier(n_neighbors=5)
knn.fit(X_train, y_train)
y_pred = knn.predict(X_test)
print("使用PCA降维后的KNN分类准确度:", accuracy_score(y_test, y_pred))
以上是关于KNN算法的优缺点以及如何处理其缺点的一些讨论和示例,希望对理解和应用KNN算法有所帮助。在实际应用中,我们需要根据具体的问题和数据特点来选择适合的处理方法,以充分发挥KNN算法的优势,并缓解其缺点带来的影响。
相关文章:

AI学习指南机器学习篇-KNN的优缺点
AI学习指南机器学习篇-KNN的优缺点 在机器学习领域中,K最近邻(K-Nearest Neighbors,KNN)算法是一种十分常见的分类和回归方法之一。它的原理简单易懂,但在实际应用中也存在一些优缺点。本文将重点探讨KNN算法的优缺点…...

全网最全!25届最近5年上海理工大学自动化考研院校分析
上海理工大学 目录 一、学校学院专业简介 二、考试科目指定教材 三、近5年考研分数情况 四、近5年招生录取情况 五、最新一年分数段图表 六、历年真题PDF 七、初试大纲复试大纲 八、学费&奖学金&就业方向 一、学校学院专业简介 二、考试科目指定教材 1、考试…...

LANG、LC_MESSAGES和LC_ALL
在Linux系统中,环境变量LANG、LC_MESSAGES和LC_ALL用于控制系统和应用程序的语言和区域设置(locale)。它们的具体作用如下: LANG: LANG是最基本的环境变量,用于指定系统的默认语言和区域设置。它是一个全局…...

生成式AI和LLM的一些基本概念和名词解释
1. Machine Learning 机器学习是人工智能(AI)的一个分支,旨在通过算法和统计模型,使计算机系统能够从数据中学习并自动改进。机器学习算法使用数据来构建模型,该模型可用于预测或决策。机器学习应用于各种领域&#x…...

python项目(课设)——飞机大战小游戏项目源码(pygame)
主程序 import pygame from plane_sprites import * class PlaneGame: """ 游戏类 """ def __init__(self): print("游戏初始化") # 初始化字体模块 pygame.font.init() # 创建游戏…...

Chatgpt教我打游戏攻略
宝可梦朱 我在玩宝可梦朱的时候,我的同行队伍里有黏美儿,等级为65,遇到了下雨天但是没有进化,为什么呢? 黏美儿(Goomy)要进化为黏美龙(Goodra),需要满足以下…...

最全信息收集工具集
吉祥学安全知识星球🔗除了包含技术干货:Java代码审计、web安全、应急响应等,还包含了安全中常见的售前护网案例、售前方案、ppt等,同时也有面向学生的网络安全面试、护网面试等。 所有的攻防、渗透第一步肯定是信息收集了…...

redis类型解析汇总
redis类型解析汇总 介绍数据类型简介主要数据类型:衍生类型: 字符串(String)底层设计原理图例设计优势字符串使用方法设置字符串值获取字符串值获取和设置部分字符串获取字符串长度追加字符串设置新值并返回旧值递增/递减同时设置…...

Unity3d自定义TCP消息替代UNet实现网络连接
以前使用UNet实现网络连接,Unity2018以后被弃用了。要将以前的老程序升到高版本,最开始打算使用Mirro,结果发现并不好用。那就只能自己写连接了。 1.TCP消息结构 (1). TCP消息是按流传输的,会发生粘包。那么在发射和接收消息时就需要对消息进行打包和解包。如果接收的消息…...

git fetch 和 git pull区别
git branch //查看本地所有分支 git branch -r //查看远程所有分支 git branch -a //查看本地和远程的所有分支 git branch <branchname> //新建分支 git branch -d <branchname> //删除本地分支 git branch -d -r <branchname> //删除远程分支&#x…...

冲击2024年CSDN博客之星TOP1:CSDN文章质量分查询在哪里?
文章目录 一,2023年博客之星规则1,不高的入围门槛2,[CSDN博文质量分测评地址](https://www.csdn.net/qc) 二,高分秘籍1,要有目录2,文章长度要足够,我的经验是汉字加代码至少1000字。3࿰…...

高性能并行计算华为云实验一:MPI矩阵运算
目录 一、实验目的 二、实验说明 三、实验过程 3.1 创建矩阵乘法源码 3.1.1 实验说明 3.1.2 实验步骤 3.2 创建卷积和池化操作源码 3.2.1 实验说明 3.2.2 实验步骤 3.3 创建Makefile文件并完成编译 3.4 建立主机配置文件与运行监测 四、实验结果与分析 4.1 矩阵乘法…...

库卡机器人减速机维修齿轮磨损故障
一、KUKA机器人减速器齿轮磨损故障的原因 1. 润滑不足:润滑油不足或质量不佳可能导致齿轮磨损。 2. 负载过重:超过库卡机械臂减速器额定负载可能导致齿轮磨损。 3. 操作不当:未按照说明书操作可能导致KUKA机器人减速器齿轮磨损。 4. 维护不足…...

【C/C++】我自己提出的数组探针的概念,快来围观吧
数组探针 在许多编程语言中如果涉及到数组那么就可以使用这个东西,便于遍历数组 中文名 数组探针 外文名 arrProbe 适用领域 大数据 所属学科 软件技术、编程 提出者 董翔 目录 1 概述2 工作原理3 应用场景 ▪ 数据处理和分析▪ 图像处理▪ 游戏开发▪…...

ArcGIS图斑分区(组)排序—从上到下从左到右
点击下方全系列课程学习 点击学习—>ArcGIS全系列实战视频教程——9个单一课程组合系列直播回放 ArcGIS图斑分区(组)从上到下从左到右排序 是之前的内容的升级 GIS技巧100例——12ArcGIS图斑空间排序 关于今天的内容 我们在19年已经和大家分…...

React useRef 组件内及组件传参使用
保存变量, 改变不引起渲染 import { useRef} from react; const dataRef useRef(null) ... dataRef.current setTimeout(()>console.log(...),1000)绑定dom const inputRef useRef(null) <input ref {inputRef} />绑定dom列表 - ref 回调 const ite…...

Intelij IDEA中Mapper.xml无法构建到资源目录的问题
问题场景: 在尝试把原本在eclipse上的Java Web项目转移至Intelij idea上时,在配置文件均与eclipse一致的情况下出现了如下报错: org.apache.ibatis.binding.BindingException: Invalid bound statement (not found): cn.umbrella.crm_core.…...

2024.6.23周报
目录 摘要 ABSTRACT 一、文献阅读 一、题目 二、摘要 三、网络架构 四、创新点 五、文章解读 1、Introduction 2、Method 3、实验 4、结论 二、代码实验 总结 摘要 本周阅读了一篇题目为NAS-PINN: NEURAL ARCHITECTURE SEARCH-GUIDED PHYSICS-INFORMED NEURAL N…...

鸿蒙实战开发:网络层的艺术——优雅封装与搭建指南(中)
前言 在鸿蒙开发的广袤天地中,网络层的搭建与封装无疑是构建高效、稳定应用的基石。继上篇的探索之后,本文将继续深入网络层的优化之旅,揭秘如何通过类型转换器、请求查询附加器以及丰富的常量参数,将网络层的构建艺术推向一个新…...

docker in docker 连私有仓库时报错 https
背景 jenkins 是使用 docker 方式部署的, 在 jenkins中又配置了 docker 的命令, 使用的宿主机的 docker 环境, 在jenkins 中执行 docker 相关命令的时候报错 jenkinse0e7b943b6e4:/$ docker login -u admin -p Harbor12345 172.16.100.15:80 WARNING! Using --password via t…...

mac怎么压缩pdf文件,苹果电脑怎么压缩pdf文件大小
在当今数字化时代,PDF文件已成为广泛使用的文档格式之一。然而,PDF 文件可能会因其包含的图像、图形和其他元素而导致文件较大,这可能会影响文件的传输、存储和共享。因此,对 PDF 文件进行压缩以减小其文件大小是很有必要的。今天…...

兴顺物流管理系统的设计
管理员账户功能包括:系统首页,个人中心,管理员管理,驾驶员管理,物流资讯管理,车辆管理,基础数据管理 员工账户功能包括:系统首页,个人中心,物流资讯管理&…...

力扣(2024.06.21)
1. 54——螺旋矩阵 给你一个 m 行 n 列的矩阵 matrix ,请按照顺时针螺旋顺序 ,返回矩阵中的所有元素。 标签:数组,矩阵,模拟 代码: class Solution:def spiralOrder(self, matrix: List[List[int]]) -&…...

飞机大战java
"飞机大战"是一种经典的射击游戏,通常在各种平台上都有实现,包括Java。如果你想要开发一个Java版本的飞机大战游戏,你可能需要考虑以下几个方面: 游戏设计:确定游戏的基本规则,比如玩家控制的飞机…...

Springboot的自动配置原理
文章目录 Springboot的自动配置原理?1. Spring Boot Starter 依赖2.SpringBootApplication注解3.自动触发配置4.Auto-configuration Classes5.条件注解6. 外部配置文件7. 优先级和排除总结 Springboot的自动配置原理? 1. Spring Boot Starter 依赖 Spring Boot 提供了各种 …...

Interview preparation--elascitSearch深分页问题
深度分页出现原因 当我们需要查询的数据页数特别大的时候,比如from size 大于10000 的时候,可能出现“window is too large” 异常,如下网图: 查询语句如下 { "query": { "bool": { "must": [ {…...

C语言笔试题:实现把一个无符号整型数字的二进制序列反序后输出
目录 题目 实例 方法一:直接交换 方法二:间接交换 拓展 题目 编写一个函数,将一个无符号整数的所有位逆序(在32位机器下) 实例 例如有一个无符号整数 unsigned int num 32; unsigned int 在32位系统中占4个字…...

elementplus如何实现dialog遮罩层外的元素可以被操作点击
elementplus如何实现dialog遮罩层外的元素可以被操作点击 element plus 组件库中的 dialog 组件可以说是使用频率最高的组件之一,它的效果是弹出一个对话框,外面默认会有一个蒙层。 现在我碰到的需求是,弹窗要正常显示,但是蒙层下…...

Springboot整合Kafka消息队列服务实例
一、Kafka相关概念 1、关于Kafka的描述 Kafka是由Apache开源,具有分布式、分区的、多副本的、多订阅者,基于Zookeeper协调的分布式处理平台,由Scala和Java语言编写。通常用来搜集用户在应用服务中产生的动作日志数据,并高速的处…...

kotlin——MVVM框架下的大型项目优化
目录 概要 优化思路 一、重构过长的Activity 二、优化臃肿的ViewModel 示例代码: 概要 在大型项目中,随着项目越做越大,activity和viewmodel的代码会越来越多,尽量保持Activity和ViewModel的代码精简和易于维护是非常重要的。个人…...