当前位置: 首页 > news >正文

Netty ByteBuf 使用详解

文章目录

  • 1.概述
  • 2. ByteBuf 分类
  • 3. 代码实例
    • 3.1 常用方法
      • 3.1.1 创建ByteBuf
      • 3.1.2 写入字节
      • 3.1.3 扩容
        • 3.1.2.1 扩容实例
        • 3.1.2.2 扩容计算新容量代码
      • 3.1.4 读取字节
      • 3.1.5 标记回退
      • 3.1.6 slice
      • 3.1.7 duplicate
      • 3.1.8 CompositeByteBuf
      • 3.1.9 retain & release
        • 3.1.9.1 retain & release
        • 3.1.9.2 Netty TailContext release
    • 3.2 完整实例
  • 4. 参考文献

1.概述

ByteBuf 对字节进行操作

ByteBuf 四个基本属性:

  • readerIndex: 读指针,字节数组,读到哪了
  • writerIndex: 写指针,字节数组,写到哪了
  • maxCapacity:最大容量,字节数组最大容量
  • markedReaderIndex:标记读指针,resetReaderIndex方法可以把readerIndex修改为markedReaderIndex,回退重新读数据
  • markedWriterIndex: 标记写指针,resetReaderIndex方法可以把 writerIndex 修改为markedWriterIndex,回退重新写数据
public abstract class AbstractByteBuf extends ByteBuf {int readerIndex;int writerIndex;private int markedReaderIndex;private int markedWriterIndex;private int maxCapacity;
}

2. ByteBuf 分类

ByteBuf 分为

  • 直接内存或堆内存(Heap/Direct)
  • 池化 和 非池化(Pooled/Unpooled)和 操作方式是否安全 (Unsafe/非 Unsafe)

ByteBuf 创建可以基于直接内存或堆内存

  • 直接内存创建和销毁的代价昂贵,但读写性能高(少一次内存复制),适合配合池化功能一起用
  • 直接内存对 GC 压力小,因为这部分内存不受 JVM 垃圾回收的管理,但也要注意及时主动释放

ByteBuf 池化 和 非池化

  • 没有池化,则每次都得创建新的 ByteBuf 实例,这个操作对直接内存代价昂贵,就算是堆内存,也会增加 GC 压力
  • 有了池化,则可以重用池中 ByteBuf 实例,并且采用了与 jemalloc 类似的内存分配算法提升分配效率
  • 高并发时,池化功能更节约内存,减少内存溢出的可能

ByteBuf 操作方式是否安全 (Unsafe/非 Unsafe)

  • Unsafe:表示每次调用 JDK 的 Unsafe 对象操作物理内存,依赖 offset + index 的方式操作数据
  • 非 Unsafe:则不需要依赖 JDK 的 Unsafe 对象,直接通过数组下标的方式操作数据

3. 代码实例

3.1 常用方法

3.1.1 创建ByteBuf

创建ByteBuf , 默认都是池化的

        // 堆内存的ByteBufByteBuf bufferHeap = ByteBufAllocator.DEFAULT.heapBuffer();// 直接内存的ByteBufByteBuf bufferDirect = ByteBufAllocator.DEFAULT.directBuffer();System.out.println(bufferHeap);System.out.println(bufferDirect);

在这里插入图片描述

3.1.2 写入字节

        bufferHeap.writeBytes(new byte[]{1, 2, 3, 4});bufferDirect.writeBytes(new byte[]{1, 2, 3, 4});print("第一次写入", bufferHeap);print("第一次写入", bufferDirect);

在这里插入图片描述

3.1.3 扩容

3.1.2.1 扩容实例
  • 默认 256
  • 扩容加一倍
  • 到了4194304,每次+4194304
      for (int i = 0; i < 100; i++) {bufferHeap.writeBytes(new byte[]{1, 2, 3, 4});bufferDirect.writeBytes(new byte[]{1, 2, 3, 4});}print("批量写入&扩容", bufferHeap);print("批量写入&扩容", bufferDirect);

在这里插入图片描述

3.1.2.2 扩容计算新容量代码
public int calculateNewCapacity(int minNewCapacity, int maxCapacity) {ObjectUtil.checkPositiveOrZero(minNewCapacity, "minNewCapacity");if (minNewCapacity > maxCapacity) {throw new IllegalArgumentException(String.format("minNewCapacity: %d (expected: not greater than maxCapacity(%d)", minNewCapacity, maxCapacity));} else {int threshold = 4194304;if (minNewCapacity == 4194304) {return 4194304;} else {int newCapacity;if (minNewCapacity > 4194304) {newCapacity = minNewCapacity / 4194304 * 4194304;if (newCapacity > maxCapacity - 4194304) {newCapacity = maxCapacity;} else {newCapacity += 4194304;}return newCapacity;} else {for(newCapacity = 64; newCapacity < minNewCapacity; newCapacity <<= 1) {}return Math.min(newCapacity, maxCapacity);}}}
}

3.1.4 读取字节

        readByte(bufferHeap);readByte(bufferDirect);print("读取一个字节", bufferHeap);print("读取一个字节", bufferDirect);

在这里插入图片描述

3.1.5 标记回退

        bufferHeap.markReaderIndex();bufferDirect.markReaderIndex();readByte(bufferHeap);readByte(bufferDirect);print("读取一个字节", bufferHeap);print("读取一个字节", bufferDirect);System.out.println("回退");bufferHeap.resetReaderIndex();bufferDirect.resetReaderIndex();readByte(bufferHeap);readByte(bufferDirect);print("读取一个字节", bufferHeap);print("读取一个字节", bufferDirect);

在这里插入图片描述

3.1.6 slice

    // 无参 slice 是从原始 ByteBuf 的 read index 到 write index 之间的内容进行切片// slice 和 bufferHeap 共享一块内存ByteBuf slice = bufferHeap.slice();slice.setByte(0, 9);print("slice", slice);readByte(bufferHeap);

在这里插入图片描述

3.1.7 duplicate

        // 内存拷贝不共享内存ByteBuf duplicate = bufferHeap.duplicate();print("duplicate", duplicate);print("bufferHeap", bufferHeap);duplicate.writeBytes(new byte[]{5});print("duplicate", duplicate);print("bufferHeap", bufferHeap);

在这里插入图片描述

3.1.8 CompositeByteBuf

        // CompositeByteBuf 是一个组合的 ByteBuf,它内部维护了一个 Component 数组,// 每个 Component 管理一个 ByteBuf,记录了这个 ByteBuf 相对于整体偏移量等信息,代表着整体中某一段的数据。// 优点,对外是一个虚拟视图,组合这些 ByteBuf 不会产生内存复制// 缺点,复杂了很多,多次操作会带来性能的损耗ByteBuf buf1 = ByteBufAllocator.DEFAULT.buffer(5);buf1.writeBytes(new byte[]{1, 2, 3, 4, 5});ByteBuf buf2 = ByteBufAllocator.DEFAULT.buffer(5);buf2.writeBytes(new byte[]{6, 7, 8, 9, 10});CompositeByteBuf buf3 = ByteBufAllocator.DEFAULT.compositeBuffer();// true 表示增加新的 ByteBuf 自动递增 write index, 否则 write index 会始终为 0buf3.addComponents(true, buf1, buf2);print("buf3", buf3);

在这里插入图片描述

3.1.9 retain & release

3.1.9.1 retain & release

Netty 这里采用了引用计数法来控制回收内存,每个 ByteBuf 都实现了 ReferenceCounted 接口

  • 每个 ByteBuf 对象的初始计数为 1
  • 调用 release 方法计数减 1,如果计数为 0,ByteBuf 内存被回收
  • 调用 retain 方法计数加 1,表示调用者没用完之前,其它 handler 即使调用了 release 也不会造成回收
  • 当计数为 0 时,底层内存会被回收,这时即使 ByteBuf 对象还在,其各个方法均无法正常使用
        bufferHeap.retain();bufferDirect.retain();bufferHeap.release();bufferDirect.release();print("release bufferHeap", bufferHeap);print("release bufferDirect", bufferDirect);bufferHeap.release();bufferDirect.release();print("release bufferHeap", bufferHeap);print("release bufferDirect", bufferDirect);bufferHeap.release();bufferDirect.release();print("release bufferHeap", bufferHeap);print("release bufferDirect", bufferDirect);

在这里插入图片描述

3.1.9.2 Netty TailContext release

io.netty.channel.DefaultChannelPipeline.TailContext

io.netty.channel.DefaultChannelPipeline.TailContext#channelRead

        @Overridepublic void channelRead(ChannelHandlerContext ctx, Object msg) {onUnhandledInboundMessage(ctx, msg);}

io.netty.channel.DefaultChannelPipeline#onUnhandledInboundMessage(ChannelHandlerContext, Object)

    protected void onUnhandledInboundMessage(ChannelHandlerContext ctx, Object msg) {onUnhandledInboundMessage(msg);if (logger.isDebugEnabled()) {logger.debug("Discarded message pipeline : {}. Channel : {}.",ctx.pipeline().names(), ctx.channel());}}

3.2 完整实例


import io.netty.buffer.ByteBuf;
import io.netty.buffer.ByteBufAllocator;
import io.netty.buffer.CompositeByteBuf;public class ByteBufStudy {public static void main(String[] args) {// 堆内存的ByteBufByteBuf bufferHeap = ByteBufAllocator.DEFAULT.heapBuffer();// 直接内存的ByteBufByteBuf bufferDirect = ByteBufAllocator.DEFAULT.directBuffer();System.out.println(bufferHeap);System.out.println(bufferDirect);bufferHeap.writeBytes(new byte[]{1, 2, 3, 4});bufferDirect.writeBytes(new byte[]{1, 2, 3, 4});print("第一次写入", bufferHeap);print("第一次写入", bufferDirect);for (int i = 0; i < 100; i++) {bufferHeap.writeBytes(new byte[]{1, 2, 3, 4});bufferDirect.writeBytes(new byte[]{1, 2, 3, 4});}print("批量写入&扩容", bufferHeap);print("批量写入&扩容", bufferDirect);readByte(bufferHeap);readByte(bufferDirect);print("读取一个字节", bufferHeap);print("读取一个字节", bufferDirect);bufferHeap.markReaderIndex();bufferDirect.markReaderIndex();readByte(bufferHeap);readByte(bufferDirect);print("读取一个字节", bufferHeap);print("读取一个字节", bufferDirect);System.out.println("回退");bufferHeap.resetReaderIndex();bufferDirect.resetReaderIndex();readByte(bufferHeap);readByte(bufferDirect);print("读取一个字节", bufferHeap);print("读取一个字节", bufferDirect);// 无参 slice 是从原始 ByteBuf 的 read index 到 write index 之间的内容进行切片// slice 和 bufferHeap 共享一块内存ByteBuf slice = bufferHeap.slice();slice.setByte(0, 9);print("slice", slice);readByte(bufferHeap);// 内存拷贝不共享内存ByteBuf duplicate = bufferHeap.duplicate();print("duplicate", duplicate);print("bufferHeap", bufferHeap);duplicate.writeBytes(new byte[]{5});print("duplicate", duplicate);print("bufferHeap", bufferHeap);// CompositeByteBuf 是一个组合的 ByteBuf,它内部维护了一个 Component 数组,// 每个 Component 管理一个 ByteBuf,记录了这个 ByteBuf 相对于整体偏移量等信息,代表着整体中某一段的数据。// 优点,对外是一个虚拟视图,组合这些 ByteBuf 不会产生内存复制// 缺点,复杂了很多,多次操作会带来性能的损耗ByteBuf buf1 = ByteBufAllocator.DEFAULT.buffer(5);buf1.writeBytes(new byte[]{1, 2, 3, 4, 5});ByteBuf buf2 = ByteBufAllocator.DEFAULT.buffer(5);buf2.writeBytes(new byte[]{6, 7, 8, 9, 10});CompositeByteBuf buf3 = ByteBufAllocator.DEFAULT.compositeBuffer();// true 表示增加新的 ByteBuf 自动递增 write index, 否则 write index 会始终为 0buf3.addComponents(true, buf1, buf2);print("buf3", buf3);bufferHeap.retain();bufferDirect.retain();bufferHeap.release();bufferDirect.release();print("release bufferHeap", bufferHeap);print("release bufferDirect", bufferDirect);bufferHeap.release();bufferDirect.release();print("release bufferHeap", bufferHeap);print("release bufferDirect", bufferDirect);bufferHeap.release();bufferDirect.release();print("release bufferHeap", bufferHeap);print("release bufferDirect", bufferDirect);}public static void print(String prefix, ByteBuf buffer) {System.out.printf("%s readerIndex : %s writerIndex : %s maxCapacity : %s capacity : %s %n",prefix, buffer.readerIndex(), buffer.writerIndex(), buffer.maxCapacity(), buffer.capacity());}public static void readByte(ByteBuf buffer) {System.out.printf("读取一个字节: %s %n", buffer.readByte());}
}

4. 参考文献

  • 黑马 Netty教程
  • 拉钩教育 Netty课程 若地老师
    在这里插入图片描述

相关文章:

Netty ByteBuf 使用详解

文章目录 1.概述2. ByteBuf 分类3. 代码实例3.1 常用方法3.1.1 创建ByteBuf3.1.2 写入字节3.1.3 扩容3.1.2.1 扩容实例3.1.2.2 扩容计算新容量代码 3.1.4 读取字节3.1.5 标记回退3.1.6 slice3.1.7 duplicate3.1.8 CompositeByteBuf3.1.9 retain & release3.1.9.1 retain &a…...

怎样去掉卷子上的答案并打印

当面对试卷答案的问题时&#xff0c;一个高效而简单的方法是利用图片编辑软件中的“消除笔”功能。这种方法要求我们首先将试卷拍摄成照片&#xff0c;然后利用该功能轻松擦除答案。尽管这一方法可能需要些许时间和耐心&#xff0c;但它确实为我们提供了一个可行的解决途径。 然…...

海思SS928/SD3403开发笔记1——使用串口调试开发板

该板子使用串口可以调试&#xff0c;下面是win11 调试 该板子步骤 1、给板子接入鼠标、键盘、usb转串口 2、下载SecureCRT&#xff0c;并科学使用 下载地址&#xff1a; 链接&#xff1a;https://pan.baidu.com/s/11dIkZVstvHQUhE8uS1YO0Q 提取码&#xff1a;vinv 3、安装c…...

JSON数据操作艺术

在现代Web开发和数据交换场景中&#xff0c;JSON&#xff08;JavaScript Object Notation&#xff09;作为一种轻量级的数据交换格式&#xff0c;扮演着至关重要的角色。它以易于阅读的文本形式存储和传输数据对象&#xff0c;而这些对象的核心便是由属性名&#xff08;键&…...

如何验证Rust中的字符串变量在超出作用域时自动释放内存?

讲动人的故事,写懂人的代码 在公司内部的Rust培训课上,讲师贾克强比较了 Rust、Java 和 C++ 三种编程语言在变量越过作用域时自动释放堆内存的不同特性。 Rust 通过所有权系统和借用检查,实现了内存安全和自动管理,从而避免了大部分内存泄漏。Rust 自动管理标准库中数据类…...

55.Python pip install 安装失败的一个情况Requirement already satisfied

1.问题 以前使用Pycharm 社区版开发的一个项目&#xff0c;今天使用PyCharm 专业版打开&#xff0c;原项目的虚拟环境从venv更换为.venv&#xff0c;然后重新安装插件。安装时&#xff0c;提示Requirement already satisfied: qt_material in c:\tools\python37\lib\site-packa…...

Axios进阶

目录 axios实例 axios请求配置 拦截器 请求拦截器 响应拦截器 取消请求 axios不仅仅是简单的用基础请求用法的形式向服务器请求数据&#xff0c;一旦请求的端口与次数变多之后&#xff0c;简单的请求用法会有些许麻烦。所以&#xff0c;axios允许我们进行创建axios实例、ax…...

C++ 丑数

描述 把只包含质因子2、3和5的数称作丑数&#xff08;Ugly Number&#xff09;。例如6、8都是丑数&#xff0c;但14不是&#xff0c;因为它包含质因子7。 习惯上我们把1当做是第一个丑数。求按从小到大的顺序的第 n个丑数。 数据范围&#xff1a;0≤&#x1d45b;≤20000≤n≤…...

小山菌_代码随想录算法训练营第三十天|122.买卖股票的最佳时机II、55. 跳跃游戏 、45.跳跃游戏II、1005.K次取反后最大化的数组和

122.买卖股票的最佳时机II 文档讲解&#xff1a;代码随想录.买卖股票的最佳时机II 视频讲解&#xff1a;贪心算法也能解决股票问题&#xff01;LeetCode&#xff1a;122.买卖股票最佳时机II 状态&#xff1a;已完成 代码实现 class Solution { public:int maxProfit(vector<…...

SpringMVC系列七: 手动实现SpringMVC底层机制-上

手动实现SpringMVC底层机制 博客的技术栈分析 &#x1f6e0;️具体实现细节总结 &#x1f41f;准备工作&#x1f34d;搭建SpringMVC底层机制开发环境 实现任务阶段一&#x1f34d;开发ZzwDispatcherServlet&#x1f966;说明: 编写ZzwDispatcherServlet充当原生的DispatcherSer…...

嵌入式web 服务器boa的编译和移植

编译环境&#xff1a;虚拟机 ubuntu 18.04 目标开发板&#xff1a;飞凌OKA40i-C开发板&#xff0c; Linux3.10 操作系统 开发板本身已经移植了boa服务器&#xff0c;但是在使用过程中发现POST方法传输大文件时对数据量有限制&#xff0c;超过1M字节就无法传输&#xff0c;这是…...

什么是js?特点是什么?组成部分?

Js是一种直译式脚本语言&#xff0c;一种动态类型&#xff0c;弱类型&#xff0c;基于原型的高级语言。 直译式&#xff1a;js程序运行过程中直接编译成机器语言。 脚本语言&#xff1a;在程序运行过程中逐行进行解释说明&#xff0c;不需要预编译。 动态类型&#xff1a;js…...

Java 面试题:如何保证集合是线程安全的? ConcurrentHashMap 如何实现高效地线程安全?

在多线程编程中&#xff0c;保证集合的线程安全是一个常见而又重要的问题。线程安全意味着多个线程可以同时访问集合而不会导致数据不一致或程序崩溃。在 Java 中&#xff0c;确保集合线程安全的方法有多种&#xff0c;包括使用同步包装类、锁机制以及并发集合类。 最简单的方法…...

打工人的PPT救星来了!用这款AI工具,10秒生成您的专属PPT

今天帮同事解决了一个代码合并的问题。其实问题不复杂&#xff0c;要把1的代码合到2的位置&#xff1a; 这个处理方式其实很简单&#xff0c;使用 “git cherry-pick hash值” 就可以。 同事直接对我赞许有加&#xff0c;不曾想被领导看到了&#xff0c;对我说了一句&#xff…...

GIT 合拼

合拼有多种方式&#xff1a; 1&#xff09;合拼分支&#xff1a; git merge [source-branch] 2&#xff09;合拼提交 &#xff1a; git cherry-pick [commit-hash] 3&#xff09;合拼单个文件&#xff1a; git checkout [source-branch] – [file] 以上合拼&#xff0c;比如将分…...

利用 Python 和 AI 技术制作智能问答机器人

利用 Python 和 AI 技术制作智能问答机器人 引言 在人工智能的浪潮下&#xff0c;智能问答机器人成为了一种非常实用的技术。它们能够处理大量的查询&#xff0c;提供即时的反馈&#xff0c;并且可以通过机器学习技术不断优化自身的性能。本文将介绍如何使用 Python 来开发一…...

electron系列(一)调用dll

用electron的目的&#xff0c;其实很简单。就是web架构要直接使用前端电脑的资源&#xff0c;但是浏览器限制了使用&#xff0c;所以用electron来达到这个目的。其中调用dll是一个非常基本的操作。 安装 ffi-napi 和 ref-napi 包: npm install ffi-napi ref-napi main.js&…...

VUE3实现个人网站模板源码

文章目录 1.设计来源1.1 网站首页页面1.2 个人工具页面1.3 个人日志页面1.4 个人相册页面1.5 给我留言页面 2.效果和源码2.1 动态效果2.2 目录结构 源码下载万套模板&#xff0c;程序开发&#xff0c;在线开发&#xff0c;在线沟通 作者&#xff1a;xcLeigh 文章地址&#xff1…...

C语言 | Leetcode C语言题解之第162题寻找峰值

题目&#xff1a; 题解&#xff1a; int findPeakElement(int* nums, int numsSize) {int ls_max0;for(int i1;i<numsSize;i){if(nums[ls_max]>nums[i]);else{ls_maxi;}}return ls_max; }...

利用pickle保存和加载对象

使用 pickle.dump 保存下来的文件可以使用 pickle.load 打开和读取。以下是一个示例&#xff0c;展示了如何使用 pickle 模块保存和加载对象&#xff1a; 保存对象 import pickle# 假设有一个对象 obj obj {"key": "value"}# 将对象保存到文件 with ope…...

定制汽车霍尔传感器

磁电效应霍尔传感器、饱和霍尔传感器、非线性霍尔传感器 霍尔传感器原理 霍尔传感器的工作原理基于霍尔效应&#xff0c;即当一块通有电流的金属或半导体薄片垂直地放在磁场中时&#xff0c;薄片的两端会产生电位差。这种现象称为霍尔效应&#xff0c;两端具有的电位差值称为…...

【2024最新华为OD-C/D卷试题汇总】[支持在线评测] LYA的巡演(100分) - 三语言AC题解(Python/Java/Cpp)

&#x1f36d; 大家好这里是清隆学长 &#xff0c;一枚热爱算法的程序员 ✨ 本系列打算持续跟新华为OD-C/D卷的三语言AC题解 &#x1f4bb; ACM银牌&#x1f948;| 多次AK大厂笔试 &#xff5c; 编程一对一辅导 &#x1f44f; 感谢大家的订阅➕ 和 喜欢&#x1f497; &#x1f…...

ChatGPT 简介

ChatGPT 是一种基于大型语言模型的对话系统&#xff0c;由 OpenAI 开发。它的核心是一个深度学习模型&#xff0c;使用了 GPT&#xff08;Generative Pre-trained Transformer&#xff09;架构。以下是 ChatGPT 的原理和工作机制的详细介绍&#xff1a; ### GPT 架构 1. **Tr…...

大数据实训室建设可行性报告

一、建设大数据实训室的背景与意义 随着信息技术的飞速发展&#xff0c;大数据已成为推动社会进步和经济发展的重要力量。中高职院校作为技能型人才培养的摇篮&#xff0c;承担着为社会输送大数据领域高素质、高技能人才的重要任务。因此&#xff0c;建设大数据实训室&#xf…...

学懂C#编程:让函数返回 多个返回值 的几种常用技术

1. 使用 out 或 ref 参数 out 和 ref 参数允许方法修改传入变量的值&#xff0c;并通过它们“返回”多个值。ref 需要变量事先初始化&#xff0c;而 out 不要求。 public void GetValues(out int val1, out string val2) {val1 10;val2 "Hello"; }// 使用示例 int…...

蔚来汽车AI算法工程师,如何理解注意力?

大家好啊&#xff0c;我是董董灿。 今天分享一个上海蔚来汽车的AI算法岗位面试经验总结帖&#xff0c;面试岗位为算法工程师。 这次面试提到的问题&#xff0c;除了与实习相关内容和反问之外&#xff0c;面试官总共问了8个问题&#xff0c;主要集中在深度学习基础概念的理解上…...

信创适配评测

概叙 信创科普参考&#xff1a;全面国产化之路-信创-CSDN博客 有必要再解释一下两个名词“28N”&#xff0c;“79号文件”&#xff0c;因为“28N”指定了由政府牵头从各领域开启国产化的基调&#xff0c;而“79号文件”则指定了国产化的截止日期2027年。 信创的本质是实现中国信…...

【Qt6.3 基础教程 04】探索Qt项目结构和配置文件

文章目录 前言Qt项目的基本结构配置文件&#xff1a;.pro文件基本构成示例.pro文件&#xff1a; qmake和构建过程步骤简述&#xff1a; 修改项目设置结论 前言 当你开始使用Qt进行开发时&#xff0c;理解项目结构和配置文件的作用是至关重要的。这篇博文将带你深入了解Qt项目的…...

SpringBoot测试实践

测试按照粒度可分为3层&#xff1a; 单元测试&#xff1a;单元测试&#xff08;Unit Testing&#xff09;又称为模块测试 &#xff0c;是针对程序模块&#xff08;软件设计的最小单位&#xff09;来进行正确性检验的测试工作。程序单元是应用的最小可测试部件。在过程化编程中…...

Flask-OAuthlib

Flask-OAuthlib库教程 Flask-OAuthlib 是一个为 Flask 应用提供 OAuth1 和 OAuth2 支持的库。它允许开发者轻松地集成第三方 OAuth 服务&#xff0c;或者构建自己的 OAuth 提供者服务。 官方文档链接 Flask-OAuthlib官方文档 架构概述 Flask-OAuthlib 的主要组件包括&…...

网站建设项目描述范文/百度如何收录网站

解决微信浏览器内video全屏问题参考文章&#xff1a; &#xff08;1&#xff09;解决微信浏览器内video全屏问题 &#xff08;2&#xff09;https://www.cnblogs.com/phpjinggege/p/8270742.html 备忘一下。...

官方网站制作公司/网络广告的收费模式有哪些

由于 MingW 在国外服务器&#xff0c;因为某些特殊情况&#xff0c;很多国内的人下载不了。 现在我的OJ提供 MinGW-W64 GCC-8.1.0 64位版本离线包&#xff0c;对应的 gcc 版本为 8.1.0。一个 7z 文件&#xff0c;下载后之直接解压&#xff0c;配置好 path 就可以使用。 下载地…...

工程建设官方网站/百度应用

Solr介绍Solr 是基于Lucene的面向企业搜索的web应用Solr 采用Java开发&#xff0c;是一个独立的高性能的企业级搜索应用服务器&#xff0c;它对外提供类似于Web-service的API接口&#xff0c;用户可以通过http请求&#xff0c;向搜索引擎服务器提交一定格式的XML文件&#xff0…...

北京做网站公司/关键词优化是什么工作

文章目录前言动态表和动态查询的概念动态表的时间属性引用前言 Fink在新发布的1.7版本中&#xff0c;不断完善和加强了SQL&Table API方面的功能支持。这使得在流计算过程中&#xff0c;用户同样能够运用熟悉的SQL语句来做数据处理&#xff0c;查询。但是相比于窗体的RDBMS而…...

模块化建站工具/优化大师班级优化大师

IDEA同一个项目中,有时候会用到 GIT 有时候 也会用到 SVN 在IDEA中,没有按钮可以直接切换的,所以可以直接修改 .IDEA 文件夹中的XML配置文件, 不需要重启喔,直接在IDEA中就可以切换了 如图,把GIT的语句注释掉就可以了,因为如果下次还要用的话,就方便了转载于:https://www.cnb…...

智恒企业网站管理系统/网站是怎么优化推广的

闪黑屏的原因主要是我们启动Activity的时候&#xff0c;需要跑完onCreate和onResume才会显示界面闪黑屏的原因主要是我们启动Activity的时候&#xff0c;需要跑完onCreate和onResume才会显示界面。也就是说需要处理一些数据后&#xff0c;才会显示。按照这种思路&#xff0c;是…...