论文:R语言数据分析之机器学习论文
欢迎大家关注全网生信学习者系列:
- WX公zhong号:生信学习者
- Xiao hong书:生信学习者
- 知hu:生信学习者
- CDSN:生信学习者2
一、研究背景
全球范围内,乳腺癌是导致癌症发病率和死亡率的主要疾病之一。根据2018年全球癌症统计报告的估计,乳腺癌是女性中第二常见的恶性肿瘤,占所有女性癌症的11.6%以上。它被列为全球癌症死亡原因的第五位,导致全球癌症死亡率的6.6%。乳腺癌导致了大量的公共卫生负担,造成了1480万残疾调整生命年(DALYs)的损失。在发达国家,乳腺癌的发病率显著高于其他国家;全球范围内,高或非常高的人类发展指数(HDI)国家的乳腺癌年龄标准化发病率为每10万名女性54.5例,而低至中等HDI国家的发病率为31.3例。在女性人口中,乳腺癌的死亡率仍然最高,是报告最多的女性癌症死亡原因。
2018年共报告了2088849例新发乳腺癌病例和626679例相关死亡。全球乳腺癌的年龄标准化发病率为每10万人口46.3例,并且在全球范围内显示出几乎四倍的变异(见图1)。最高发病率出现在澳大利亚和新西兰、西欧、北欧和北美,而最低发病率则出现在南亚、中东、东非和西非、东南亚和中美洲。乳腺癌的发病率在西方国家,包括澳大利亚、欧洲和美洲,往往更为普遍。与低人类发展指数(HDI)国家或中等HDI国家相比,乳腺癌在非常高HDI或高HDI国家的发病率更高。

乳腺癌是全球女性死亡的主要原因之一。它可以分为三类:正常、良性和恶性肿瘤。此外,乳腺癌分为五个阶段(0-IV)。然而,这些阶段是根据肿瘤的大小、是否为侵袭性或非侵袭性癌症、是否影响淋巴结以及是否扩散到其他部位来区分的,尽管随着癌症进展到第四阶段,生存机会会减少[@dey2018review]。因此,乳腺癌的早期发现和分析可以提高生存概率并降低死亡率。乳腺X线摄影(Mammography)、乳腺超声(Breast Ultrasound)、磁共振成像(Magnetic Resonance Imaging, MRI)、正电子发射断层扫描(Positron Emission Tomography, PET)以及计算机断层扫描(Computed Tomography, CT)是一些用于乳腺癌诊断的成像技术。本文使用的数据构建乳腺癌诊断分类模型。该数据集的特征是从乳腺肿块的细针抽吸(Fine Needle Aspirate, FNA)的数字化图像中计算得出。它们描述了图像中存在的细胞核的特征。因此,开发精确的算法以识别和区分乳腺癌显得尤为必要,这将显著提升诊断的准确性。本文将基于随机森林算法构建预测乳腺癌患者的模型。
二、研究意义
在临床上,数据驱动的技术正在逐渐展现出其独特的价值,特别是在癌症诊断与预测方面。基于数字化图像的数据开发,我们构建了一个针对乳腺癌患者的二分类器模型。该预测模型将为乳腺癌的临床诊断提供有力支持,有助于医生更准确地识别乳腺癌患者,为患者带来更好的诊断效果和生活质量。
三、内容

本次论文包含以下内容:
-
第二章 数据准备
-
第三章 特征提取
-
第四章 模型构建
-
第五章 解释模型
-
第六章 总结
四、教程
本教程提供了四种不同的格式,HTML、PDF、word和epub,方便广大读者阅读。

五、获取教程
获取该教程和输入数据见下面链接:
百度网盘链接: https://pan.baidu.com/s/1nIqIn13KGLjuwVeCtW8r4A
提取码(提示:付费获取): 请前往R语言数据分析之机器学习论文
相关文章:
论文:R语言数据分析之机器学习论文
欢迎大家关注全网生信学习者系列: WX公zhong号:生信学习者Xiao hong书:生信学习者知hu:生信学习者CDSN:生信学习者2 一、研究背景 全球范围内,乳腺癌是导致癌症发病率和死亡率的主要疾病之一。根据2018年…...
【C++】STL中优先级队列的使用与模拟实现
前言:在前面我们学习了栈和队列的使用与模拟实现,今天我们来进一步的学习优先级队列使用与模拟实现 💖 博主CSDN主页:卫卫卫的个人主页 💞 👉 专栏分类:高质量C学习 👈 💯代码仓库:卫…...
C#开发-集合使用和技巧(二)Lambda 表达式介绍和应用
C#开发-集合使用和技巧 Lambda 表达式介绍和应用 C#开发-集合使用和技巧介绍简单的示例:集合查询示例: 1. 基本语法从主体语句上区分:1. 主体为单一表达式2. 主体是代码块(多个表达式语句) 从参数上区分1. 带输入参数的…...
Qt底层原理:深入解析QWidget的绘制技术细节(2)
(本文续上一篇《Qt底层原理:深入解析QWidget的绘制技术细节(1)》) QWidget绘制体系为什么这么设计【重点】 在传统的C图形界面框架中,例如DUILib等,控件的绘制逻辑往往直接在控件的类的内部,例如PushButt…...
【Gradio】表格数据科学与图表-连接到数据库
简介 本指南解释了如何使用 Gradio 将您的应用程序连接到数据库。我们将连接到托管在 AWS 上的 PostgreSQL 数据库,但 gradio 对您连接到的数据库类型及其托管位置完全不可知。因此,只要您能够编写 Python 代码来连接到您的数据,您就可以使用…...
艾多美用“艾”为生命加油,献血活动回顾
用艾为生命加油 6月10日~16日,艾多美中国开启献血周活动,已经陆续收到来自烟台总部、山东、广东、河南、四川、重庆、贵阳,乌鲁木齐,吉林,等地区的艾多美员工、会员、经销商发来的爱心助力,截止到目前&…...
人工智能在气象预报领域的崛起:GraphCast引领新纪元
最近,谷歌推出的天气预测大模型GraphCast在全球范围内引起了广泛关注,其卓越的表现不仅刷新了人们对AI能力的认知,更预示着传统天气预报工作模式的深刻变革。 GraphCast是一款基于机器学习技术的天气预测工具,它通过深度学习和大数…...
http和https的区别在哪
HTTP(超文本传输协议)和HTTPS(超文本传输安全协议)之间存在几个关键区别主要涉及安全性、端口、成本、加密方式、搜索引擎优化(SEO)、身份验证等方面 1、安全性:HTTP(超文本传输协议…...
windows10远程桌面端口,Windows 10远程桌面端口修改的两个方法
在Windows 10系统中,远程桌面功能允许用户通过网络从一台计算机远程访问和控制另一台计算机。默认情况下,远程桌面服务使用的端口是3389。然而,出于安全考虑,许多管理员和用户希望修改这一默认端口。本指南将详细介绍如何在Window…...
力扣1504.统计全1子矩形
力扣1504.统计全1子矩形 开一个二维数组存每个点从它本身开始向左有多少连续的1 遍历矩形右下角(i,j) 再遍历行k in i每一行的矩形数量 minx min(minx,left(k,j)) class Solution {public:int numSubmat(vector<vector<int>>& mat) {int n mat.size();int…...
vue3高德地图组件化,解决复用地图组件时渲染失败问题
思路:多个页面都需要调用地图,将地图封装成一个组件进行复用,发现调用时只有第一次渲染成功了。 解决:相同 id 的地图渲染只能有一次,如果多个复用地图的页面不需要同时渲染,使用 v-if 来控制;…...
Langchain 如何工作
How does LangChain work? LangChain是如何工作的? Let’s consider our initial example where we upload the US Constitution PDF and pose questions to it. In this scenario, LangChain compiles the data from the PDF and organizes it. 让我们考虑我们最初的例子…...
【数据结构】顺序表实操——通讯录项目
Hi~!这里是奋斗的小羊,很荣幸您能阅读我的文章,诚请评论指点,欢迎欢迎 ~~ 💥💥个人主页:奋斗的小羊 💥💥所属专栏:C语言 🚀本系列文章为个人学习…...
C++继承与多态—多重继承的那些坑该怎么填
课程总目录 文章目录 一、虚基类和虚继承二、菱形继承的问题 一、虚基类和虚继承 虚基类:被虚继承的类,就称为虚基类 virtual作用: virtual修饰成员方法是虚函数可以修饰继承方式,是虚继承,被虚继承的类就称为虚基类…...
论文阅读:基于谱分析的全新早停策略
来自JMLR的一篇论文,https://www.jmlr.org/papers/volume24/21-1441/21-1441.pdf 这篇文章试图通过分析模型权重矩阵的频谱来解释模型,并在此基础上提出了一种用于早停的频谱标准。 1,分类难度对权重矩阵谱的影响 1.1 相关研究 在最近针对…...
1.接口测试-postman学习
目录 1.接口相关概念2.接口测试流程3.postman基本使用-创建请求(1)环境(2)新建项目集合Collections(3)新建collection(4)新建模块(5)构建请求请求URLheader设…...
2024年码蹄杯本科院校赛道初赛(省赛)
赛时所写题,简单写一下思路,qwq 第一题: 输出严格次小值, //#pragma GCC optimize(2)#include <iostream> #include <cstring> #include <algorithm> #include <vector> #include <queue> #incl…...
PHP蜜语翻译器在线文字转码解码源码
源码介绍 PHP蜜语翻译器在线文字转码解码源码 文字加密通话、一键转换、蜜语密码 无需数据库,可以将文字、字母、数字、代码、表情、标点符号等内容转换成新的文字形式,通过简单的文字以不同的排列顺序来表达不同的内容!支持在线加密解密 有多种加密展示…...
安卓浏览器区分启动、打开、分享
搞了几个钟头,终于全兼容了,分享有2种类型! void getDataFromIntent(Intent intent) {if (intent.getAction().equals(Intent.ACTION_VIEW)) {urln intent.getDataString();if (urln ! null) {if (urln.contains("\n"))urln url…...
C/C++ 数组负数下标
一 概述 在 C 中,数组是一块连续的内存空间,数组的下标通常用来定位这段内存中的特定元素。下标通常从 0 开始,最大到数组长度减 1。例如,一个有 10 个元素的数组,其有效下标范围是从 0 到 9。 当你尝试使用负数下标来…...
全志A40i android7.1 调试信息打印串口由uart0改为uart3
一,概述 1. 目的 将调试信息打印串口由uart0改为uart3。 2. 版本信息 Uboot版本:2014.07; Kernel版本:Linux-3.10; 二,Uboot 1. sys_config.fex改动 使能uart3(TX:PH00 RX:PH01),并让boo…...
【Oracle】分区表
个人主页:Guiat 归属专栏:Oracle 文章目录 1. 分区表基础概述1.1 分区表的概念与优势1.2 分区类型概览1.3 分区表的工作原理 2. 范围分区 (RANGE Partitioning)2.1 基础范围分区2.1.1 按日期范围分区2.1.2 按数值范围分区 2.2 间隔分区 (INTERVAL Partit…...
Device Mapper 机制
Device Mapper 机制详解 Device Mapper(简称 DM)是 Linux 内核中的一套通用块设备映射框架,为 LVM、加密磁盘、RAID 等提供底层支持。本文将详细介绍 Device Mapper 的原理、实现、内核配置、常用工具、操作测试流程,并配以详细的…...
技术栈RabbitMq的介绍和使用
目录 1. 什么是消息队列?2. 消息队列的优点3. RabbitMQ 消息队列概述4. RabbitMQ 安装5. Exchange 四种类型5.1 direct 精准匹配5.2 fanout 广播5.3 topic 正则匹配 6. RabbitMQ 队列模式6.1 简单队列模式6.2 工作队列模式6.3 发布/订阅模式6.4 路由模式6.5 主题模式…...
网站指纹识别
网站指纹识别 网站的最基本组成:服务器(操作系统)、中间件(web容器)、脚本语言、数据厍 为什么要了解这些?举个例子:发现了一个文件读取漏洞,我们需要读/etc/passwd,如…...
Git 3天2K星标:Datawhale 的 Happy-LLM 项目介绍(附教程)
引言 在人工智能飞速发展的今天,大语言模型(Large Language Models, LLMs)已成为技术领域的焦点。从智能写作到代码生成,LLM 的应用场景不断扩展,深刻改变了我们的工作和生活方式。然而,理解这些模型的内部…...
代码规范和架构【立芯理论一】(2025.06.08)
1、代码规范的目标 代码简洁精炼、美观,可持续性好高效率高复用,可移植性好高内聚,低耦合没有冗余规范性,代码有规可循,可以看出自己当时的思考过程特殊排版,特殊语法,特殊指令,必须…...
【 java 虚拟机知识 第一篇 】
目录 1.内存模型 1.1.JVM内存模型的介绍 1.2.堆和栈的区别 1.3.栈的存储细节 1.4.堆的部分 1.5.程序计数器的作用 1.6.方法区的内容 1.7.字符串池 1.8.引用类型 1.9.内存泄漏与内存溢出 1.10.会出现内存溢出的结构 1.内存模型 1.1.JVM内存模型的介绍 内存模型主要分…...
手机平板能效生态设计指令EU 2023/1670标准解读
手机平板能效生态设计指令EU 2023/1670标准解读 以下是针对欧盟《手机和平板电脑生态设计法规》(EU) 2023/1670 的核心解读,综合法规核心要求、最新修正及企业合规要点: 一、法规背景与目标 生效与强制时间 发布于2023年8月31日(OJ公报&…...
十九、【用户管理与权限 - 篇一】后端基础:用户列表与角色模型的初步构建
【用户管理与权限 - 篇一】后端基础:用户列表与角色模型的初步构建 前言准备工作第一部分:回顾 Django 内置的 `User` 模型第二部分:设计并创建 `Role` 和 `UserProfile` 模型第三部分:创建 Serializers第四部分:创建 ViewSets第五部分:注册 API 路由第六部分:后端初步测…...




