当前位置: 首页 > news >正文

算法 Hw9

Hw 9

  • 1 Scheduling with profits and deadlines
    • 1
    • 2
    • 3
    • 4
    • 5
  • 2 Parallel machine
    • 1
    • 2
    • 3
    • 4

1 Scheduling with profits and deadlines

1

决策问题表述:

给定一个利润值 P P P,是否存在一个任务调度方案使得完成所有任务的总利润至少为 P P P


2

在 NP 类中:
给定一个任务调度方案,可以在多项式时间内验证该方案的总利润是否至少为 P P P。验证过程包括检查每个任务是否在截止日期前完成,并计算总利润。因此,该问题在 NP 类中。

对于 NP 完全性:
- 给定一个 0/1 背包问题实例,其中有 n n n 个物品,每个物品有一个重量 w i w_i wi 和价值 v i v_i vi,以及一个总重量限制 W W W

  • 对应于调度问题中的每个任务 a j a_j aj,设置其处理时间 t j = w i t_j = w_i tj=wi,利润 p j = v i p_j = v_i pj=vi,并设置截止日期 d j = W d_j = W dj=W,保证任务必须在总时间 W W W 内完成。
  • 利润值 P P P 设为背包问题中的价值总和的要求。

通过归约,若能在调度问题中找到一个利润至少为 P P P 的方案,则在 0/1 背包问题中可以找到一个总价值至少为 P P P 且总重量不超过 W W W 的物品选择方案。因此,调度问题的决策版本是 NP 完全的。


3

  • 状态定义:设 d p [ t ] [ k ] dp[t][k] dp[t][k] 表示在总时间 t t t 内,选择前 k k k 个任务能获得的最大利润。

  • 状态转移方程:
    对于每个任务 a j a_j aj,有两种选择:

    • 不选择任务 a j a_j aj d p [ t ] [ k ] = d p [ t ] [ k − 1 ] dp[t][k] = dp[t][k-1] dp[t][k]=dp[t][k1]
    • 选择任务 a j a_j aj(前提是 t ≥ t j t \geq t_j ttj t ≤ d j t \leq d_j tdj): d p [ t ] [ k ] = max ⁡ ( d p [ t ] [ k − 1 ] , d p [ t − t j ] [ k − 1 ] + p j ) dp[t][k] = \max(dp[t][k-1], dp[t-t_j][k-1] + p_j) dp[t][k]=max(dp[t][k1],dp[ttj][k1]+pj)
  • 初始状态:

    • d p [ 0 ] [ 0 ] = 0 dp[0][0] = 0 dp[0][0]=0,表示没有时间且没有任务时的利润为 0。
  • 算法步骤:

    • 初始化 d p dp dp 数组为 0。
    • 遍历所有任务,根据上述状态转移方程更新 d p dp dp 数组。
    • 最终检查 d p [ T ] [ n ] dp[T][n] dp[T][n] 是否大于等于 P P P,其中 T T T 是计算机的总时间。

4

  • 状态定义:设 d p [ t ] dp[t] dp[t] 表示在总时间 t t t 内能获得的最大利润。

  • 状态转移方程:
    对于每个任务 a j a_j aj,有两种选择:

    • 不选择任务 a j a_j aj d p [ t ] = d p [ t ] dp[t] = dp[t] dp[t]=dp[t]
    • 选择任务 a j a_j aj(前提是 t ≥ t j t \geq t_j ttj t ≤ d j t \leq d_j tdj): d p [ t ] = max ⁡ ( d p [ t ] , d p [ t − t j ] + p j ) dp[t] = \max(dp[t], dp[t-t_j] + p_j) dp[t]=max(dp[t],dp[ttj]+pj)
  • 初始状态:

    • d p [ 0 ] = 0 dp[0] = 0 dp[0]=0,表示没有时间时的利润为 0。
  • 算法步骤:

    • 初始化 d p dp dp 数组为 0。
    • 遍历所有任务,根据上述状态转移方程更新 d p dp dp 数组。
    • 最终 d p [ T ] dp[T] dp[T] 即为最大利润,其中 T T T 是计算机的总时间。

5

由于上述动态规划算法是一个精确算法(在多项式时间内找到最优解),因此它的近似比为 1,即它能够找到最优解。


2 Parallel machine

1

考虑所有工作中处理时间最长的工作 J k J_k Jk,其处理时间为 p k = max ⁡ { p j : 1 ≤ j ≤ n } p_k = \max\{p_j : 1 \leq j \leq n\} pk=max{pj:1jn}

由于该工作必须在某台机器上连续运行 p k p_k pk 时间单位,且在此期间不能有其他工作在同一台机器上运行,因此该工作的完工时间至少为 p k p_k pk

因此,最优完工时间 C max ∗ C^*_{\text{max}} Cmax 必须至少为 p k p_k pk,即 C max ∗ ≥ max ⁡ { p k : 1 ≤ k ≤ n } C^*_{\text{max}} \geq \max\{p_k : 1 \leq k \leq n\} Cmaxmax{pk:1kn}


2

设所有工作的总处理时间为 P = ∑ k = 1 n p k P = \sum_{k=1}^{n} p_k P=k=1npk

对于最优调度,每台机器在总时间 C max ∗ C^*_{\text{max}} Cmax 内处理一部分工作。

由于共有 m m m 台机器,总的工作负载 P P P 必须分配给这 m m m 台机器。因此,平均每台机器的负载为 P m \frac{P}{m} mP

在最优调度中,任意机器的完工时间不能少于其分配到的工作负载时间,即最优完工时间 C max ∗ C^*_{\text{max}} Cmax 不能小于平均机器负载 P m \frac{P}{m} mP,即 C max ∗ ≥ 1 m ∑ k = 1 n p k C^*_{\text{max}} \geq \frac{1}{m} \sum_{k=1}^{n} p_k Cmaxm1k=1npk


3

def GreedyParallelScheduling(jobs, m):# jobs 是一个由元组 (p_k, job_id) 组成的作业列表# m 是机器的数量# 初始化了一个大小为m的空列表schedules,# 用于记录每台机器分配的作业schedules = [[] for _ in range(m)]# 初始化了一个大小为m的数组machine_completion_times,# 用于记录每台机器的完工时间,初始值为0machine_completion_times = [0] * m# 对作业列表按照处理时间的非递增顺序进行排序jobs.sort(reverse=True, key=lambda x: x[0])# 对每个已排序的作业进行调度for (p_k, job_id) in jobs:# 找到完工时间最小的机器 Mimin_machine = machine_completion_times.index(min(machine_completion_times))# 将作业分配给机器 Mischedules[min_machine].append(job_id)# 更新机器 Mi 的完工时间,增加该作业的处理时间machine_completion_times[min_machine] += p_kreturn schedules

运行时间:

  • 初始化和读取输入需要 O ( n ) O(n) O(n) 时间。
  • 对作业按处理时间排序需要 O ( n log ⁡ n ) O(n \log n) O(nlogn) 时间。
  • 遍历每个作业并找到具有最小结束时间的机器需要 O ( n log ⁡ m ) O(n \log m) O(nlogm) 时间,因为可以使用最小堆来跟踪机器的结束时间。

总体运行时间为 O ( n log ⁡ n + n log ⁡ m ) = O ( n log ⁡ n ) O(n \log n + n \log m) = O(n \log n) O(nlogn+nlogm)=O(nlogn),因为通常情况下 n ≥ m n \geq m nm


4

设所有工作的总处理时间为 P = ∑ k = 1 n p k P = \sum_{k=1}^{n} p_k P=k=1npk,处理时间最长的工作为 p max = max ⁡ { p k : 1 ≤ k ≤ n } p_{\text{max}} = \max\{p_k : 1 \leq k \leq n\} pmax=max{pk:1kn}

在贪心算法中,任何时刻将未分配的工作分配给当前空闲时间最少的机器,这种策略确保每台机器的负载是尽可能均衡的。

假设最坏情况下某台机器上的负载时间为 L L L,即 L ≤ P m + p max L \leq \frac{P}{m} + p_{\text{max}} LmP+pmax
其中, P m \frac{P}{m} mP 是平均每台机器分配到的负载时间, p m a x p_{max} pmax 是任何单个工作可能增加的最大负载时间。

因此,贪心算法的完工时间 C m a x C_{max} Cmax 满足
C max ≤ 1 m ∑ k = 1 n p k + max ⁡ { p k : 1 ≤ k ≤ n } C_{\text{max}} \leq \frac{1}{m} \sum_{k=1}^{n} p_k + \max\{p_k : 1 \leq k \leq n\} Cmaxm1k=1npk+max{pk:1kn}

由于最优完工时间 C m a x ∗ C^*_{max} Cmax 至少为这两个量中的最大值,即:
C m a x ∗ ≥ max ⁡ ( 1 m ∑ k = 1 n p k , max ⁡ { p k : 1 ≤ k ≤ n } ) C^*_{max} \geq \max \left(\frac{1}{m} \sum_{k=1}^{n} p_k, \max\{p_k : 1 \leq k \leq n\}\right) Cmaxmax(m1k=1npk,max{pk:1kn})

结合以上两个不等式,可得
C m a x ≤ 2 C m a x ∗ C_{max} \leq 2C^*_{max} Cmax2Cmax

因此,贪心算法是一个多项式时间的 2-近似算法。


相关文章:

算法 Hw9

Hw 9 1 Scheduling with profits and deadlines12345 2 Parallel machine1234 1 Scheduling with profits and deadlines 1 决策问题表述: 给定一个利润值 P P P,是否存在一个任务调度方案使得完成所有任务的总利润至少为 P P P 2 在 NP 类中&…...

前端JS必用工具【js-tool-big-box】学习,字符串字母大小写转换的方法使用

这一小节,我们说一下 js-tool-big-box 工具库中,字符串字母大小写转换的使用。请注意:不是说单纯的把字符串转为大写,或者小写。关注 js-tool-big-box 的小伙伴可能知道,我们并没有把一些特别基础的,JS原生…...

Zookeeper:分布式系统中的协调者

Zookeeper:分布式系统中的协调者 前言:引言Zookeeper是什么? 基本概念Zookeeper 数据模型Znode 类型会话Watcher 应用场景分布式锁配置维护组服务名字服务 典型应用场景数据发布/订阅负载均衡命名服务分布式协调/通知集群管理Master选举 工作…...

如何使用代理IP进行数据抓取,PHP爬虫抓取京东商品数据

使用代理IP进行数据抓取通常是为了绕过IP封锁、提高抓取效率或保护你的真实IP地址。在PHP中,你可以使用cURL库来发送HTTP请求,并通过设置cURL选项来使用代理IP。 以下是一个基本的步骤说明,展示如何使用PHP和cURL库结合代理IP来抓取京东商品…...

一口气安装【Python】教程

浏览器搜索python,或者直接跳转网址。 https://www.python.orghttps://www.python.org/ 找到想下载的版本 根据自己电脑下载相应的版本 自定义安装 下一步 修改路径,然后点击安装 等待一会,喝个饮料 点击关闭 安装成功 安装结束...

华为HCIP Datacom H12-821 卷13

1.多选题 以下关于二层漫游和三层漫游的描述,以下说法正确的是? A、如果 STA 漫游时前后关联的 VLAN ID 相同则一定属于二层漫游 B、二层漫游是指客户端在同一子网内漫游 C、三层漫游是指客户端在不同子网间漫游 D、三层漫游前后 STA 关联的 AP 服务集上的 VL AN 必须相…...

基于SSM的酒店客房管理系统

基于SSM的酒店客房管理系统 ✌全网粉丝20W,csdn特邀作者、博客专家、CSDN新星计划导师、java领域优质创作者,博客之星、掘金/华为云/阿里云/InfoQ等平台优质作者、专注于Java技术领域和毕业项目实战✌ 🍅获取项目下载方式🍅 链接点击直达:下载…...

【数据结构与算法】最短路径,Floyd算法,Dijkstra算法 详解

Floyd算法 for (int k 0; k < n; k) {for (int i 0; i < n; i) {for (int j 0; j < n; j) {if (d[i][k] ! INF && d[k][j] ! INF) {d[i][j] min(d[i][j], d[i][k] d[k][j]);}}} }Dijkstra算法&#xff08;基于最小堆&#xff09; void dijkstra(int st…...

PHP中如何进行网络爬虫和数据抓取?

随着互联网时代的到来&#xff0c;网络数据的爬取与抓取已成为许多人的日常工作。在支持网页开发的程序语言中&#xff0c;php以其可扩展性和易上手的特点&#xff0c;成为了网络爬虫和数据抓取的热门选项。本文将从以下几个方面介绍php中如何进行网络爬虫和数据抓取。 一、HT…...

【Hadoop集群搭建】实验3:JDK安装及配置、Hadoop本地模式部署及测试

1. 安装 SSH 工具 SSH Secure Shell Client 传输软件 FinalShell(推荐使用) 1.1使用SSH工具将JDK安装包上传至虚拟主机hadoop01, hadoop02, hadoop03&#xff0c;sogou500w 数据上传至 hadoop01。 a. 在虚拟主机/usr 目录下创建文件夹 java&#xff0c;JDK 上传至此目录&…...

分布式锁在Spring Boot应用中的优雅实现

在现代微服务架构中&#xff0c;分布式锁是一种常用的技术手段&#xff0c;用于确保在分布式系统中&#xff0c;同一时间只有一个服务实例能够执行某个特定的操作。这对于防止并发问题、保证数据一致性至关重要。在Spring Boot应用中&#xff0c;我们可以通过自定义注解和切面的…...

常用框架-Spring Boot

常用框架-Spring Boot 1、Spring Boot是什么?2、为什么要使用Spring Boot?3、Spring Boot的核心注解是哪个?它主要由哪几个注解组成的?4、有哪些运行Spring Boot的方式?5、如何理解 Spring Boot 中的Starters?6、有哪些常见的Starters?7、如何在Spring Boot启动的时候运…...

AttributeError: module ‘cv2‘ has no attribute ‘face‘

Traceback (most recent call last): File "D:\AI_37\pythonProject7\day23\课堂代码\day23\07-人脸识别.py", line 4, in <module> recognizer cv2.face.LBPHFaceRecognizer_create() ^^^^^^^^ AttributeError: module cv2 has no at…...

不管你是普本还是双一流,建议你一定要尝试一下学习GIS开发

毕业季&#xff0c;很多企业的秋招和暑期实习已经开始了&#xff0c;在这个24秋招和25考研并列进行的毕业季&#xff0c;GIS专业的同学&#xff0c;做好自己的职业规划显得十分重要。 WebGIS开发&#xff0c;近年来成为了3S及相关专业的学生备受关注的热门选择。 不论是本科毕…...

OurBMC大咖说丨第5期:BMC开发中的非标准化问题探讨

栏目介绍&#xff1a;"OurBMC大咖说" 是由 OurBMC 社区精心策划的线上讲座栏目&#xff0c;邀请 BMC 相关领域大咖共同探讨 BMC 全栈技术的发展趋势、挑战和机遇。无论你是初学者还是资深从业者&#xff0c;"OurBMC大咖说" 都将为你提供一个宝贵的学习和交…...

空调制冷剂泄漏引发健康隐患,冷媒传感器实时监测至关重要

随着夏季的脚步逐渐临近&#xff0c;气温逐渐攀升&#xff0c;空调成为了许多家庭和企业必不可少的降温设备。然而&#xff0c;近年来多起因空调制冷剂泄漏导致的健康问题和安全事故&#xff0c;让人们开始重新审视空调使用安全的重要性。其中&#xff0c;冷媒传感器的实时监测…...

开源TinyFSM状态机适用于嵌入式工业平台吗?

文章目录 引言基于传统 C 实现的状态机TinyFSM 实现的对比现代 C 实现的状态机性能对比TinyFSM 性能测试传统 C 性能测试现代 C 性能测试 工业Misra C编程标准TinyFSM 的优缺点分析结论 引言 TinyFSM是一个为C设计的轻量级有限状态机开源库库。 在嵌入式系统开发中&#xff0c…...

EE trade:利弗莫尔三步建仓法

在股市投资领域&#xff0c;利弗莫尔这个名字代表着无数的智慧和经历。他的三步建仓法成为了投资者们趋之若鹜的学习对象。本文将详细解析利弗莫尔的著名买入法&#xff0c;通过分步进攻方式&#xff0c;有效掌控市场并实现盈利。 一、利弗莫尔的三步建仓法详解 利弗莫尔三步…...

Java中Callable的应用

在Java中&#xff0c;Callable接口是一种用于并发编程的接口&#xff0c;它与Runnable类似&#xff0c;但有一些重要的区别和优势。Callable接口提供了一种在多线程环境下执行任务并返回结果的方法。以下是一些Callable接口的常见应用场景和使用示例&#xff1a; Callable vs.…...

测试卡无法仪表注册问题分析

1、问题描述 00101测试卡无法注册LTE网络&#xff0c;modemlog中发现终端未发起Attach请求&#xff0c;对比正常注册非正常注册的版本&#xff0c;发现正常的多出了ims apn。可以通过ATCGDCONT?来查询modem APN参数。 2、问题分析 目前Modem是一套&#xff0c;没有相关修改。因…...

云计算——弹性云计算器(ECS)

弹性云服务器&#xff1a;ECS 概述 云计算重构了ICT系统&#xff0c;云计算平台厂商推出使得厂家能够主要关注应用管理而非平台管理的云平台&#xff0c;包含如下主要概念。 ECS&#xff08;Elastic Cloud Server&#xff09;&#xff1a;即弹性云服务器&#xff0c;是云计算…...

React Native 导航系统实战(React Navigation)

导航系统实战&#xff08;React Navigation&#xff09; React Navigation 是 React Native 应用中最常用的导航库之一&#xff0c;它提供了多种导航模式&#xff0c;如堆栈导航&#xff08;Stack Navigator&#xff09;、标签导航&#xff08;Tab Navigator&#xff09;和抽屉…...

【Redis技术进阶之路】「原理分析系列开篇」分析客户端和服务端网络诵信交互实现(服务端执行命令请求的过程 - 初始化服务器)

服务端执行命令请求的过程 【专栏简介】【技术大纲】【专栏目标】【目标人群】1. Redis爱好者与社区成员2. 后端开发和系统架构师3. 计算机专业的本科生及研究生 初始化服务器1. 初始化服务器状态结构初始化RedisServer变量 2. 加载相关系统配置和用户配置参数定制化配置参数案…...

连锁超市冷库节能解决方案:如何实现超市降本增效

在连锁超市冷库运营中&#xff0c;高能耗、设备损耗快、人工管理低效等问题长期困扰企业。御控冷库节能解决方案通过智能控制化霜、按需化霜、实时监控、故障诊断、自动预警、远程控制开关六大核心技术&#xff0c;实现年省电费15%-60%&#xff0c;且不改动原有装备、安装快捷、…...

STM32F4基本定时器使用和原理详解

STM32F4基本定时器使用和原理详解 前言如何确定定时器挂载在哪条时钟线上配置及使用方法参数配置PrescalerCounter ModeCounter Periodauto-reload preloadTrigger Event Selection 中断配置生成的代码及使用方法初始化代码基本定时器触发DCA或者ADC的代码讲解中断代码定时启动…...

OkHttp 中实现断点续传 demo

在 OkHttp 中实现断点续传主要通过以下步骤完成&#xff0c;核心是利用 HTTP 协议的 Range 请求头指定下载范围&#xff1a; 实现原理 Range 请求头&#xff1a;向服务器请求文件的特定字节范围&#xff08;如 Range: bytes1024-&#xff09; 本地文件记录&#xff1a;保存已…...

Nginx server_name 配置说明

Nginx 是一个高性能的反向代理和负载均衡服务器&#xff0c;其核心配置之一是 server 块中的 server_name 指令。server_name 决定了 Nginx 如何根据客户端请求的 Host 头匹配对应的虚拟主机&#xff08;Virtual Host&#xff09;。 1. 简介 Nginx 使用 server_name 指令来确定…...

Linux-07 ubuntu 的 chrome 启动不了

文章目录 问题原因解决步骤一、卸载旧版chrome二、重新安装chorme三、启动不了&#xff0c;报错如下四、启动不了&#xff0c;解决如下 总结 问题原因 在应用中可以看到chrome&#xff0c;但是打不开(说明&#xff1a;原来的ubuntu系统出问题了&#xff0c;这个是备用的硬盘&a…...

基于matlab策略迭代和值迭代法的动态规划

经典的基于策略迭代和值迭代法的动态规划matlab代码&#xff0c;实现机器人的最优运输 Dynamic-Programming-master/Environment.pdf , 104724 Dynamic-Programming-master/README.md , 506 Dynamic-Programming-master/generalizedPolicyIteration.m , 1970 Dynamic-Programm…...

蓝桥杯 冶炼金属

原题目链接 &#x1f527; 冶炼金属转换率推测题解 &#x1f4dc; 原题描述 小蓝有一个神奇的炉子用于将普通金属 O O O 冶炼成为一种特殊金属 X X X。这个炉子有一个属性叫转换率 V V V&#xff0c;是一个正整数&#xff0c;表示每 V V V 个普通金属 O O O 可以冶炼出 …...