什么叫收网站建设发票/seo公司是什么意思
目录
1. 引言
2. 线性回归理论基础
2.1 线性模型概述
2.2 最小二乘法
3. 数学基础
3.1 矩阵运算
3.2 微积分
3.3 统计学
4. 实现与应用
4.1 使用Scikit-learn实现线性回归
4.2 模型评估
5. 深入理解
5.1 多元线性回归
5.2 特征选择
5.3 理解模型内部
6. 实战与项目
6.1 实践项目
6.2 Kaggle竞赛
7. 研究与发展
7.1 阅读文献与论文
7.2 拓展学习
8. 资源推荐
8.1 课程
8.2 书籍
总结
1. 引言
线性回归是最基本的机器学习模型之一,广泛应用于各种科学研究和工程领域。它通过找到数据之间的线性关系来进行预测和解释。本教程将详细介绍线性回归的理论基础、数学原理、实现方法及应用案例,帮助读者全面掌握线性回归模型。
2. 线性回归理论基础
2.1 线性模型概述
线性回归模型用于描述自变量(独立变量)和因变量(响应变量)之间的线性关系。其基本形式为:
线性回归模型的核心思想是通过调整参数 β0 和 β1 来使得模型对数据的拟合程度最好,即使预测值 y 尽可能接近实际观测值。
在实际应用中,线性回归模型被广泛用于各种预测和解释性分析。例如,在经济学中,可以用线性回归模型预测消费水平与收入之间的关系;在医学研究中,可以用线性回归模型分析某种治疗方法的效果;在工程领域,可以用线性回归模型预测材料的强度与压力之间的关系。
线性回归模型假设自变量和因变量之间存在线性关系,这意味着模型假设因变量可以表示为自变量的线性组合。虽然这一假设在很多情况下并不完全成立,但线性回归模型由于其简单性和易于解释,仍然是最常用的统计模型之一。
2.2 最小二乘法
最小二乘法是估计线性回归模型参数的标准方法。它通过最小化残差平方和来求解模型参数。残差 ei 表示实际值与预测值之间的差异:
最小二乘法之所以被广泛使用,是因为它提供了一种简单而有效的估计方法。通过最小化残差平方和,最小二乘法确保了模型对所有数据点的总体拟合效果最佳。虽然最小二乘法假设误差项 ϵ 服从正态分布且具有同方差性,但在实际应用中,即使这些假设不完全成立,最小二乘法仍能提供较为稳健的估计结果。
3. 数学基础
3.1 矩阵运算
在线性回归中,使用矩阵形式可以简化计算。假设有 n 个样本,每个样本有 p 个特征,可以将数据表示为矩阵形式:
矩阵运算在线性回归中起到关键作用,因为它可以简化和加速计算过程。通过使用矩阵形式,可以将多元线性回归的计算转化为矩阵运算,从而避免了繁琐的手工计算。这使得处理大规模数据集成为可能。
在实际应用中,矩阵形式的线性回归广泛用于高维数据分析。例如,在基因组学研究中,可以用矩阵形式的线性回归模型分析数千个基因表达水平与某种疾病之间的关系;在金融领域,可以用矩阵形式的线性回归模型分析多个市场指标对股票价格的影响。
3.2 微积分
微积分在参数优化中起到重要作用。通过对损失函数(如残差平方和)求导,可以找到参数的最优解。微积分的基本概念包括导数和偏导数:
微积分在优化问题中具有广泛应用。例如,在机器学习模型的训练过程中,通过求解损失函数的导数,可以找到使损失函数最小化的参数值。这一过程通常被称为梯度下降法(Gradient Descent),是机器学习中常用的优化算法。
此外,微积分还用于分析模型的性能和稳定性。例如,通过计算损失函数的二阶导数,可以评估模型的凸性和收敛性。这些分析有助于选择合适的优化算法和模型参数,提高模型的训练效率和预测准确性。
3.3 统计学
统计学基础有助于理解回归分析的统计性质。重要概念包括:
- 均值(Mean):数据的平均值。
- 方差(Variance):数据的离散程度。
- 协方差(Covariance):两个变量的共同变化程度。
- 相关系数(Correlation Coefficient):两个变量的线性关系强度。
-
统计学概念在回归分析中具有重要作用。例如,均值和方差用于描述数据的基本统计特性,协方差和相关系数用于分析变量之间的关系。这些统计指标不仅有助于理解数据的分布和特性,还可以用于模型的评估和解释。
在实际应用中,统计学方法广泛用于数据预处理、特征选择和模型评估。例如,通过计算特征与目标变量之间的相关系数,可以选择与目标变量关系密切的特征,从而提高模型的预测性能。通过分析模型残差的统计性质,可以评估模型的拟合效果和稳健性。
4. 实现与应用
4.1 使用Scikit-learn实现线性回归
Scikit-learn 是 Python 中最流行的机器学习库之一,提供了便捷的线性回归实现方法。
import numpy as np
import pandas as pd
from sklearn.model_selection import train_test_split
from sklearn.linear_model import LinearRegression
from sklearn.metrics import mean_squared_error, r2_score# 生成示例数据
np.random.seed(0)
X = 2 * np.random.rand(100, 1)
y = 4 + 3 * X + np.random.randn(100, 1)# 划分训练集和测试集
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)# 创建并训练线性回归模型
lin_reg = LinearRegression()
lin_reg.fit(X_train, y_train)# 预测
y_pred = lin_reg.predict(X_test)# 评估模型
mse = mean_squared_error(y_test, y_pred)
r2 = r2_score(y_test, y_pred)
print("Mean Squared Error:", mse)
print("R² Score:", r2)
在这个示例中,我们首先生成了一些示例数据,并将数据集划分为训练集和测试集。然后,我们使用Scikit-learn库中的LinearRegression类创建并训练了一个线性回归模型。最后,我们使用均方误差(MSE)和决定系数(R²)评估了模型的性能。
4.2 模型评估
模型评估是衡量模型性能的重要步骤。常用评估指标包括:
- 均方误差(Mean Squared Error, MSE):衡量预测值与实际值之间的平均平方误差。均方误差越小,表示模型的预测误差越小,拟合效果越好。
- 决定系数(R² Score):衡量模型解释方差的比例,取值范围为 [0, 1],值越大表示模型性能越好。R²的取值为1表示模型能够完美预测所有数据点,取值为0表示模型无法解释数据的任何变化。
除了这些指标,还可以使用其他评估方法,如平均绝对误差(Mean Absolute Error, MAE)、均方根误差(Root Mean Squared Error, RMSE)等。这些指标可以从不同的角度评估模型的预测性能和稳健性。
5. 深入理解
5.1 多元线性回归
多元线性回归扩展了单变量情况,处理多个自变量的情况。其模型形式为:
在多元线性回归中,我们不仅考虑一个自变量与因变量之间的关系,还同时考虑多个自变量对因变量的影响。这使得模型能够捕捉到更复杂的数据关系,适用于更广泛的应用场景。
例如,在房地产价格预测中,可以使用多元线性回归模型同时考虑房屋面积、房龄、地段等多个特征;在医学研究中,可以使用多元线性回归模型同时分析多种生物标志物对疾病风险的影响。
5.2 特征选择
特征选择在多元线性回归中尤为重要。常用方法包括:
- 前向选择(Forward Selection):从空模型开始,逐步添加最显著的特征。每次添加一个特征,使得模型的性能显著提升,直到无法显著提升为止。
- 后向消除(Backward Elimination):从全模型开始,逐步删除不显著的特征。每次删除一个特征,使得模型的性能不显著下降,直到无法显著提升为止。
- 正则化(Regularization):通过引入惩罚项防止过拟合,如Lasso(L1正则化)和Ridge(L2正则化)。正则化方法通过在损失函数中加入特征系数的惩罚项,抑制不重要特征的影响,提高模型的泛化能力。
通过合理的特征选择,可以提高模型的预测性能和解释性,避免过拟合和冗余特征的影响。
5.3 理解模型内部
理解模型内部有助于解释模型输出。主要包括:
- 参数解释:回归系数 βi 表示自变量 xi 对因变量 y 的影响。系数的正负表示影响的方向,系数的绝对值表示影响的大小。
- 诊断工具:通过残差分析、QQ图等工具检测模型假设的满足情况。残差分析可以帮助识别模型的系统误差和异常值,QQ图用于检验残差的正态性。
- 模型解释性:使用LIME(Local Interpretable Model-agnostic Explanations)等工具解释模型的预测结果。LIME是一种通用的模型解释方法,可以生成局部线性模型来解释任意复杂模型的预测结果,帮助用户理解模型的决策过程。
通过这些方法,可以深入理解模型的内部机制和预测逻辑,提高模型的透明度和可信度。
6. 实战与项目
6.1 实践项目
通过实际项目巩固所学知识。在实际数据集上实现一个线性回归模型,包括数据预处理、模型训练、模型评估等步骤。例如,可以选择一个公开的数据集,如Kaggle上的房价预测数据集,进行以下步骤:
- 数据预处理:加载数据集,进行数据清洗、特征工程和数据标准化。
- 模型训练:使用Scikit-learn实现线性回归模型,对数据进行训练。
- 模型评估:使用各种评估指标评估模型性能,如MSE、R²等。
- 结果解释:分析模型的回归系数和预测结果,解释特征对目标变量的影响。
6.2 Kaggle竞赛
Kaggle是一个数据科学竞赛平台,通过参与Kaggle竞赛,可以提升实际问题解决能力。以下是一个简单的Kaggle项目示例:
import numpy as np
import pandas as pd
from sklearn.model_selection import train_test_split
from sklearn.linear_model import LinearRegression
from sklearn.metrics import mean_squared_error, r2_score# 读取数据
data = pd.read_csv('kaggle_dataset.csv')# 数据预处理
X = data[['feature1', 'feature2', 'feature3']]
y = data['target']# 划分训练集和测试集
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)# 创建并训练线性回归模型
lin_reg = LinearRegression()
lin_reg.fit(X_train, y_train)# 预测
y_pred = lin_reg.predict(X_test)# 评估模型
mse = mean_squared_error(y_test, y_pred)
r2 = r2_score(y_test, y_pred)
print("Mean Squared Error:", mse)
print("R² Score:", r2)
7. 研究与发展
7.1 阅读文献与论文
通过阅读经典文献和研究论文,了解线性回归的历史发展和最新研究进展是深入理解和掌握线性回归模型的重要途径。线性回归最早由Sir Francis Galton在19世纪末提出,用于研究遗传学中的特征回归问题。随后,Karl Pearson进一步发展了这一方法,将其推广到更广泛的统计学领域。
在20世纪初,线性回归已经成为一种标准的统计分析工具,广泛应用于各种科学研究中。其基本思想是通过最小化残差平方和来拟合数据,找出自变量和因变量之间的线性关系。最小二乘法(Ordinary Least Squares, OLS)作为估计回归系数的标准方法,由Carl Friedrich Gauss和Adrien-Marie Legendre独立提出和发展,至今仍被广泛使用。
近年来,线性回归的研究不仅局限于模型本身,还包括其应用、扩展和优化。例如,研究人员开发了鲁棒回归(Robust Regression)来处理异常值和异方差性问题。Lasso回归和Ridge回归等正则化技术被引入,以应对多重共线性和过拟合问题。此外,广义线性模型(Generalized Linear Models, GLM)将线性回归的思想扩展到非线性关系中,使得模型的应用范围更加广泛。
阅读经典文献和最新研究论文有助于了解这些发展的详细内容。例如,读者可以查阅如下文献:
- “The Application of Least Squares to Systems of Linear Equations” by Adrien-Marie Legendre
- “Theory of Probability” by Carl Friedrich Gauss
- “Regression Towards Mediocrity in Hereditary Stature” by Francis Galton
- “A Modern Approach to Regression with Errors in Variables” by Raymond J. Carroll et al.
- “Least Absolute Shrinkage and Selection Operator (Lasso)” by Robert Tibshirani
通过阅读这些文献,读者可以深入理解线性回归模型的数学基础、历史背景和最新进展。
7.2 拓展学习
探索线性回归在不同领域中的应用也是提升理解和应用能力的重要方式。线性回归在经济学、工程学、社会科学等领域有广泛的应用。
在经济学中,线性回归常用于分析经济指标之间的关系。例如,通过回归分析可以研究GDP与消费、投资、政府支出等变量之间的关系,帮助经济学家预测经济趋势并制定政策。
在工程学中,线性回归用于建模和分析实验数据。例如,在材料科学中,可以通过线性回归分析材料的应力与应变关系,进而预测材料的性能。在电气工程中,线性回归可以用于信号处理和系统建模。
在社会科学中,线性回归被广泛应用于社会调查和实验研究中。例如,社会学家可以通过回归分析研究教育水平、收入、职业地位等变量之间的关系。心理学家可以利用线性回归分析实验数据,研究不同心理因素对行为的影响。
此外,对比学习其他回归方法也有助于全面理解回归分析。例如:
- 逻辑回归(Logistic Regression):用于分类问题,特别是二分类问题。它通过对数几率函数建立回归模型,预测事件发生的概率。
- 决策树回归(Decision Tree Regression):通过构建树状结构,递归地将数据集划分为子集,适用于非线性和复杂关系的建模。
- 支持向量回归(Support Vector Regression, SVR):利用支持向量机(SVM)的原理,通过在高维空间中寻找最佳超平面,适用于线性和非线性回归问题。
通过学习和对比这些方法,可以更好地理解线性回归的优缺点,并在实际应用中选择最合适的模型。
8. 资源推荐
8.1 课程
Coursera上的“Machine Learning by Andrew Ng”课程是学习线性回归的优秀资源之一。这门课程由斯坦福大学的Andrew Ng教授讲授,涵盖了机器学习的基本概念和技术,包括线性回归、逻辑回归、神经网络、支持向量机、聚类、降维等。课程内容详实,讲解清晰,适合初学者和有一定基础的学习者。特别是关于线性回归部分,Andrew Ng教授详细介绍了线性回归的原理、数学推导、实现方法以及应用案例,帮助学习者全面掌握这一基础模型。
此外,Coursera上还有许多其他相关课程,例如:
- “Regression Models” by Johns Hopkins University:专注于回归分析的各个方面,包括线性回归、逻辑回归、泊松回归等。
- “Statistical Learning” by Stanford University:基于《An Introduction to Statistical Learning》的课程,深入介绍统计学习理论和方法。
通过这些课程的学习,读者可以系统地掌握线性回归及其他回归模型的理论和应用。
8.2 书籍
推荐阅读以下书籍,帮助深入理解线性回归和统计学习:
- 《Introduction to Statistical Learning》 by Gareth James, Daniela Witten, Trevor Hastie, and Robert Tibshirani:这本书通俗易懂,适合初学者和中级学习者。书中涵盖了线性回归、分类、重采样方法、正则化、非线性方法、树方法、支持向量机、集成方法和无监督学习等内容。
- 《The Elements of Statistical Learning》 by Trevor Hastie, Robert Tibshirani, and Jerome Friedman:这本书内容深入,适合有一定统计学和机器学习基础的读者。书中详细介绍了统计学习理论、模型和方法,包括线性回归、分类、正则化、降维、树方法、集成方法、支持向量机、神经网络等。
- 《Applied Linear Statistical Models》 by John Neter, Michael H. Kutner, Christopher J. Nachtsheim, and William Wasserman:这本书详细介绍了线性回归模型及其应用,适合从事实际应用的读者。
通过阅读这些书籍,可以全面了解线性回归的理论基础、实现方法和应用案例,为进一步研究和应用打下坚实基础。
总结
线性回归是机器学习中最基本且广泛应用的模型之一,通过找到数据之间的线性关系来进行预测和解释。线性回归的理论基础、数学原理、实现方法及应用案例,全面掌握这一模型。通过最小二乘法估计参数,使用矩阵运算简化计算,结合微积分和统计学概念,线性回归模型在经济学、工程学、社会科学等领域有广泛应用。阅读经典文献和最新研究论文可以深入理解其发展历史和最新进展,同时,通过实际项目和Kaggle竞赛,进一步提升实践能力。推荐的课程和书籍资源将有助于进一步深入学习和应用线性回归及其他机器学习方法。
相关文章:

【机器学习】——【线性回归模型】——详细【学习路线】
目录 1. 引言 2. 线性回归理论基础 2.1 线性模型概述 2.2 最小二乘法 3. 数学基础 3.1 矩阵运算 3.2 微积分 3.3 统计学 4. 实现与应用 4.1 使用Scikit-learn实现线性回归 4.2 模型评估 5. 深入理解 5.1 多元线性回归 5.2 特征选择 5.3 理解模型内部 6. 实战与项…...

【mysql】常用操作:维护用户/开启远程/忘记密码/常用命令
一、维护用户 1.1 创建用户 -- 语法 > CREATE USER [username][host] IDENTIFIED BY [password];-- 例子: -- 添加用户user007,密码123456,并且只能在本地可以登录 > CREATE USER user007localhost IDENTIFIED BY 123456; -- 添加用户…...

引领AI新时代:深度学习与大模型的关键技术
文章目录 📑前言一、内容概述二、作者简介三、书籍特色四、学习平台与资源 📑前言 在数字化浪潮席卷全球的今天,人工智能(AI)和深度学习技术已经渗透到我们生活的方方面面。从智能手机中的智能语音助手,到…...

STL——常用算法(二)
一、常用拷贝和替换算法 1.copy #include <iostream> #include <vector> #include <algorithm> using namespace std; void printVector(int val) {cout << val << " "; } void test01() {vector<int>v1;for (int i 0; i <…...

MyCAT 2 底层原理
MyCAT 2 底层原理 1. MyCAT 2 架构概述 MyCAT 2 是一款开源的数据库中间件,它通过分库分表、读写分离、动态路由等机制提升数据库系统的性能和扩展性。MyCAT 2 的架构设计灵活,适用于多种数据库类型,包括 MySQL、PostgreSQL 和 SQL Server …...

操作系统实训复习笔记(第7关:生产者消费者问题实践)
目录 第7关:生产者消费者问题实践 第1关:生产者消费者问题实践 1、在主线程中初始化锁为解锁状态 2、访问对象时的加锁操作与解锁操作 3、(生产和消费进程操作后)信号量操作实现进程同步 4、先等待(生产还是消费…...

通过物联网管理多台MQTT设备-基于全志T527开发板
一、系统概述 基于米尔-全志 T527设计一个简易的物联网网关,该网关能够管理多台MQTT设备,通过MQTT协议对设备进行读写操作,同时提供HTTP接口,允许用户通过HTTP协议与网关进行交互,并对设备进行读写操作。 二、系统架…...

Python学习前简介
1.python简介 2.python特点 3.python解释器 4.pyCharm简介 一、python简介 Python是一种高级编程语言,用于多种应用,包括网站开发、数据科学、人工智能、机器学习、桌面应用、网络应用、软件开发、网络爬虫等。它由Guido van Rossum于1991年首次发布&am…...

【Text2SQL 论文】MAGIC:为 Text2SQL 任务自动生成 self-correction guideline
论文:MAGIC: Generating Self-Correction Guideline for In-Context Text-to-SQL ⭐⭐⭐ 莱顿大学 & Microsoft, arXiv:2406.12692 一、论文速读 DIN-SQL 模型中使用了一个 self-correction 模块,他把 LLM 直接生成的 SQL 带上一些 guidelines 的 p…...

2024 年 8 款最佳建筑 3D 渲染软件
你现在使用的3D 渲染软件真得适合你吗? 在建筑和室内渲染当中,市面上有许多3D渲染软件可供选择。然而,并不是每款软件都适合你的需求。本指南将重点介绍2024年精选的8款最佳建筑3D渲染软件,帮助你了解不同的选项,并选…...

MAB规范(3):Chapter6 Glossary 术语表
第6章 - 术语表 此章不做过多的批注,都是些简单的术语解释。...

40python数据分析numpy基础之diag处理矩阵对角线元素
1 python数据分析numpy基础之diag处理矩阵对角线元素 python的numpy库的diag(v,k0)函数,以一维数组的形式返回方阵的对角线元素,或将一维数组转换为方阵(非对角线元素为0)。 方阵:方形矩阵,行数和列数相等…...

ffmpeg+nginx+video实现rtsp流转hls流,web页面播放
项目场景: 最近调试海康摄像头需要将rtsp流在html页面播放,因为不想去折腾推拉流,所以我选择ffmpeg转hls流,nginx转发,html直接访问就好了 1.首先要下载nginx和ffmpeg 附上下载地址: nginx nginx news ffmpeg htt…...

1、Redis系列-Redis高性能原理详解
Redis高性能原理详解 Redis是一款高性能的内存数据库,广泛应用于需要快速读写访问的数据密集型应用中。它的高性能得益于多方面的设计和优化。以下是Redis高性能实现的详细解释: 1. 单线程架构 Redis采用单线程架构来处理客户端请求,这与传…...

18.枚举
学习知识:枚举类型、相关的使用方法 Main.java: public class Main {public static void main(String[] args) {myenum[] colorlist myenum.values();//获取枚举中所有对象的引用数组for (myenum one : colorlist){System.out.println(one.toString(…...

全省高等职业学校大数据技术专业建设暨专业质量监测研讨活动顺利开展
6月21日,省教育评估院在四川邮电职业技术学院组织开展全省高等职业学校大数据技术专业建设暨专业质量监测研讨活动。省教育评估院副院长赖长春,四川邮电职业技术学院党委副书记、校长冯远洪,四川邮电职业技术学院党委委员、副校长程德杰等出席…...

2-16 基于matlab的动载荷简支梁模态分析程序
基于matlab的动载荷简支梁模态分析程序,可调节简支梁参数,包括截面宽、截面高、梁长度、截面惯性矩、弹性模量、密度。输出前四阶固有频率,任意时刻、位置的响应结果。程序已调通,可直接运行。 2-16 matlab 动载荷简支梁模态分析 …...

AI大模型的核心
前言 没错,AI大模型的核心成功因素通常可以归结为三大要素:大数据、大算力和强算法。这三个因素相辅相成,共同推动了现代人工智能技术的发展。 1. 大数据 • 定义:指的是涵盖广泛领域的海量数据,包括文本、图像、音…...

【Android面试八股文】ViewHolder为什么要被声明成静态内部类?
文章目录 ViewHolder为什么要被声明成静态内部类?1. 避免隐式引用导致的内存泄漏2. 提高性能3. 代码可读性和维护性实例代码总结ViewHolder为什么要被声明成静态内部类? 将 ViewHolder 声明为静态内部类有几个重要的原因,这样做可以提高性能并避免潜在的内存泄漏。下面是详…...

Android 11 系统OTA升级到旧版本(去除升级时间戳校验)
简介 由于客户要求能够通过OTA升级到旧版本因此探寻反向升级的方法。 方法一:进入recover模式 adb reboot recovery 点击Apply update from SD card 然后选择以前的OTA升级包就可以了。这种方式实测可以升级到旧的版本。但是我们的客户是通过在线升级软件进行更新…...

更新表的统计信息并清空缓存--DM8达梦数据库
更新表的统计信息并清空缓存--DM8达梦数据库 环境介绍1 收集 <表> 上所有对象信息,含索引2 清理缓存的执行计划3 达梦数据库学习使用列表 环境介绍 在某些环境刚完成数据迁移, 10万行以上大表数据量有修改1/3 ,查询条件已经创建索引,执行计划不好,或执行计划…...

【前后端实现】AHP权重计算
AHP权重计算: 需求:前端记录矩阵维度、上三角值,后端构建比较矩阵、计算权重值并将结果返回给前端 比较矩阵构建 如果你想要根据上三角(不包括对角线)的值来构建对称矩阵,那么你可以稍作修改上述的generate…...

K8S日常运维手册
Kubernetes(简称 K8S)是一种广泛使用的容器编排平台,能够自动化部署、扩展和管理容器化应用。对于运维人员来说,掌握 Kubernetes 的日常运维技能是确保系统稳定运行的关键。本文将介绍一些 Kubernetes 日常运维的基本操作与技巧&a…...

现在的Java面试都这么扯淡了吗?
在开始前刚好我有一些资料,是我根据网友给的问题精心整理了一份「java的资料从专业入门到高级教程」, 点个关注在评论区回复“666”之后私信回复“666”,全部无偿共享给大家!!!开发兼过半年面试官 刚开始…...

安全加固 MariaDB 和 MySQL 数据库
安全加固 MariaDB 和 MySQL 数据库 在今天的网络环境中,保护数据库安全至关重要,特别是像 MariaDB 和 MySQL 这样的流行数据库。本文将介绍一些关键的安全加固步骤,以确保数据库系统的安全性和稳定性。 1. 数据库版本和基础设置 首先&…...

【计算机毕业设计】167校园失物招领微信小程序
🙊作者简介:拥有多年开发工作经验,分享技术代码帮助学生学习,独立完成自己的项目或者毕业设计。 代码可以私聊博主获取。🌹赠送计算机毕业设计600个选题excel文件,帮助大学选题。赠送开题报告模板ÿ…...

yum的概念、相关命令、ftp http部署步骤;NFS共享文件操作步骤
目录 yum 配置文件 缓存功能操作步骤 创建并配置本地仓库文件 yum相关命令 yum install __ yum repolist yum list __ yum info __ yum search __ yum whatprovides __ yum remove __ yum -y update __ yum history yum grouplist yum groupinstall "__&q…...

Spire.PDF for .NET【文档操作】演示:如何删除 PDF 中的图层
借助Spire.PDF,我们可以在新建或现有pdf文档的任意页面中添加线条、图像、字符串、椭圆、矩形、饼图等多种图层。同时,它还支持我们从pdf文档中删除特定图层。 Spire.PDF for .NET 是一款独立 PDF 控件,用于 .NET 程序中创建、编辑和操作 PD…...

【c语言】二级指针
1,定义 本质还是从指针的角度去理解,只不过存的指针的值 2,使用方法...

心理健康测试系统设计
心理健康测试系统设计需要综合考虑多个方面,以确保系统的准确性、易用性和有效性。以下是一个心理健康测试系统设计方案: 一、设计目标 准确性:确保测试结果能够准确反映被测者的心理健康状况。 易用性:设计简洁明了的界面和操作…...