当前位置: 首页 > news >正文

网站备案 国外域名/谷歌推广平台

网站备案 国外域名,谷歌推广平台,互动平台上市公司,网站开发工具6作为 AI 领域的杰出人物,吴恩达教授对编程 Agent 的兴起表示了极大的兴趣。他认为,编程 Agent 有潜力通过自动执行繁琐的任务、提高代码质量和加速开发周期来彻底改变软件开发行业。 本文将深入探讨吴恩达对编程 Agent 的见解, 多代理系统质…

作为 AI 领域的杰出人物,吴恩达教授对编程 Agent 的兴起表示了极大的兴趣。他认为,编程 Agent 有潜力通过自动执行繁琐的任务、提高代码质量和加速开发周期来彻底改变软件开发行业。

本文将深入探讨吴恩达对编程 Agent 的见解,

  • 多代理系统质量保证
  • LDB调试测试
  • Agent专用研发工作流程

等关键概念。通过实际案例和深入分析,我们将探索这些技术如何协同工作,使编程 Agent 能够以更高的效率和有效性构建软件。

通过多代理系统实现开发与测试的隔离与分工

在传统的软件开发模式中,开发和测试通常由不同的个人或团队执行。这种分离旨在确保代码质量,因为测试人员可以从不同的角度提供客观的评估。

然而通过单一Agent模式很难实现这种隔离方案。为了解决这个问题,多Agent编码系统应运而生,为软件开发提供了一种更加协作和高效的方法。在多代理系统中,不同的“代理”被赋予特定的角色和职责,例如代码生成、测试和调试。这些代理可以相互交互和协作,以实现共同的目标,例如构建高质量的软件。

AgentCoder:多代理代码生成框架

AgentCoder 是一个很好的多代理系统应用案例,它是一个利用多个代理进行迭代测试和优化的代码生成框架。

AgentCoder 架构图

在 AgentCoder 中,一个代理充当代码生成器,负责根据给定的规范或用户需求生成代码片段。另一个代理充当代码测试器,评估生成的代码是否存在任何错误、漏洞或性能问题。

这两个代理协同工作,迭代地改进代码质量。代码生成器生成代码片段,代码测试器提供反馈,然后代码生成器根据该反馈改进其输出。这个循环会持续进行,直到生成满足所需规范的代码。

多代理系统的好处

通过将开发和测试过程分离到不同的代理中,多代理系统为软件开发带来了许多好处:

  • **隔离:**开发和测试代理可以独立运作,减少不同开发阶段之间发生冲突或依赖的可能性。
  • **专业化:**代理可以专门负责其专业领域,从而提高整体效率和代码质量。
  • **可扩展性:**可以轻松地添加或移除代理以适应项目的规模和复杂性。
示例:多代理系统的应用

让我们考虑一个简单的例子来说明多代理系统是如何工作的。假设我们想要创建一个计算两个数字之和的函数。我们可以使用多代理系统,其中一个代理负责生成代码,另一个代理负责测试代码。

# 代理 1:代码生成
def generate_sum_code():code = """
def sum(a, b):return a + b"""return code# 代理 2:测试生成
def generate_tests():tests = [{"input": (2, 3), "expected_output": 5},{"input": (-1, 1), "expected_output": 0},{"input": (10, 20), "expected_output": 30}]return tests# 运行代码并测试
code = generate_sum_code()
exec(code)
tests = generate_tests()
for test in tests:assert sum(*test["input"]) == test["expected_output"]

在这个例子中,代理 1 生成一个简单的 sum 函数,代理 2 生成一组测试用例来验证函数的正确性。通过这种方式,开发和测试过程是隔离的,但它们协同工作以确保生成的代码的质量。

基于调试测试来准确地发现错误

调试是软件开发的一个不可分割的环节,即使在编程 Agent 时代也是如此。识别和修复代码中的错误对于确保软件的可靠性和正确性至关重要。虽然编程 Agent 可以生成代码,但它们仍然可能犯错,因此有效的调试技术至关重要。

逐行测试是一种人类常用的调试技术,它同样可以应用于编程 Agent 生成的代码。通过在代码执行过程中逐行验证运行时执行,Agent可以准确地查明错误发生的位置以及代码行为偏离预期结果的位置。

LDB:大型语言模型调试器

LDB(大型语言模型调试器)是一种利用逐行测试来调试大型语言模型 (LLM) 生成的代码的系统。

LDB 系统架构图

LDB 系统的工作原理是将 LLM 生成的代码作为输入,并通过解释器逐行执行。对于每一行,LDB 都会检查代码的运行时执行是否与预期行为一致。如果不一致,LDB 会将该行标记为潜在错误,并向开发人员提供有关该问题的详细信息。

逐行测试的好处

通过利用逐行测试,LDB 可以识别各种类型的错误,包括:

  • **逻辑错误:**代码中导致意外结果的错误推理或顺序错误。
  • **语法错误:**违反编程语言规则的错误,例如拼写错误或缺少分号。
  • **语义错误:**代码在语法上是正确的,但没有产生预期结果的错误,例如使用错误的变量名或调用错误的函数。

为 Agent 提供专有研发工作流以提升效率

为了在软件开发领域取得成功,拥有结构化的工作流程和专门的工具至关重要。软件工程师依靠版本控制系统、代码编辑器和测试框架等工具来有效地管理软件开发的复杂性。同样,编程 Agent 可以受益于专用的研发工作流程,以提高其性能和效率。

SWE-agent:自动化软件工程的代理-计算机接口

SWE-agent(Agent-Computer Interfaces Enable Automated Software Engineering)是一个旨在通过提供自动化研发工作流程来增强编程 Agent 功能的系统。

SWE-agent 系统为编程 Agent 提供了全面的开发环境,包括:

  • **代码库:**对现有代码库的访问权限,允许代理从过去的项目中学习和重用代码。
  • **API:**与流行的软件工程工具和服务的集成,例如版本控制系统、问题跟踪器和持续集成/持续交付 (CI/CD) 管道。
  • **反馈机制:**从开发人员和用户那里收集反馈的渠道,允许代理随着时间的推移学习和改进。
专用研发工作流的好处

通过为编程 Agent 提供专用的研发工作流程,SWE-agent 使它们能够:

  • **利用现有资源:**代理可以利用现有的代码库、API 和工具,减少从头开始编写所有代码的需要。
  • **与现有系统集成:**代理可以与软件开发中使用的标准工具和工作流程无缝集成,从而实现轻松协作和代码管理。
  • **从反馈中学习:**代理可以使用从开发人员和用户那里收集的反馈来改进其性能并解决代码中的任何问题。
示例:专有研发工作流的应用

让我们考虑一个实际的例子来说明专用的研发工作流程如何使编程 Agent 受益。假设我们正在构建一个 Web 应用程序,并且我们希望自动化创建新页面的过程。

使用 SWE-agent,我们可以创建一个工作流程,该工作流程将以下任务自动化:

  1. **生成代码:**代理可以根据用户提供的规范生成新页面的代码。
  2. **测试代码:**代理可以针对新页面运行自动化测试,以确保其按预期工作。
  3. **将代码提交到版本控制:**代理可以将新页面代码提交到版本控制系统,例如 Git。
  4. **部署代码:**代理可以将新页面部署到生产环境。

通过自动化这些任务,SWE-agent 使开发人员能够专注于更高级别的任务,例如设计和用户体验。

结论

随着编程 Agent 的不断发展,我们可以期待看到它们在软件开发中发挥越来越重要的作用,使开发人员能够专注于更高级别的任务,并推动创新。从简化代码生成到增强调试功能,编程 Agent 必将塑造软件开发的未来。

如何系统的去学习大模型LLM ?

作为一名热心肠的互联网老兵,我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。

但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的 AI大模型资料 包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来

😝有需要的小伙伴,可以V扫描下方二维码免费领取🆓

一、全套AGI大模型学习路线

AI大模型时代的学习之旅:从基础到前沿,掌握人工智能的核心技能!

img

二、640套AI大模型报告合集

这套包含640份报告的合集,涵盖了AI大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。

img

三、AI大模型经典PDF籍

随着人工智能技术的飞速发展,AI大模型已经成为了当今科技领域的一大热点。这些大型预训练模型,如GPT-3、BERT、XLNet等,以其强大的语言理解和生成能力,正在改变我们对人工智能的认识。 那以下这些PDF籍就是非常不错的学习资源。

img

在这里插入图片描述

四、AI大模型商业化落地方案

img

阶段1:AI大模型时代的基础理解

  • 目标:了解AI大模型的基本概念、发展历程和核心原理。
  • 内容
    • L1.1 人工智能简述与大模型起源
    • L1.2 大模型与通用人工智能
    • L1.3 GPT模型的发展历程
    • L1.4 模型工程
    • L1.4.1 知识大模型
    • L1.4.2 生产大模型
    • L1.4.3 模型工程方法论
    • L1.4.4 模型工程实践
    • L1.5 GPT应用案例

阶段2:AI大模型API应用开发工程

  • 目标:掌握AI大模型API的使用和开发,以及相关的编程技能。
  • 内容
    • L2.1 API接口
    • L2.1.1 OpenAI API接口
    • L2.1.2 Python接口接入
    • L2.1.3 BOT工具类框架
    • L2.1.4 代码示例
    • L2.2 Prompt框架
    • L2.2.1 什么是Prompt
    • L2.2.2 Prompt框架应用现状
    • L2.2.3 基于GPTAS的Prompt框架
    • L2.2.4 Prompt框架与Thought
    • L2.2.5 Prompt框架与提示词
    • L2.3 流水线工程
    • L2.3.1 流水线工程的概念
    • L2.3.2 流水线工程的优点
    • L2.3.3 流水线工程的应用
    • L2.4 总结与展望

阶段3:AI大模型应用架构实践

  • 目标:深入理解AI大模型的应用架构,并能够进行私有化部署。
  • 内容
    • L3.1 Agent模型框架
    • L3.1.1 Agent模型框架的设计理念
    • L3.1.2 Agent模型框架的核心组件
    • L3.1.3 Agent模型框架的实现细节
    • L3.2 MetaGPT
    • L3.2.1 MetaGPT的基本概念
    • L3.2.2 MetaGPT的工作原理
    • L3.2.3 MetaGPT的应用场景
    • L3.3 ChatGLM
    • L3.3.1 ChatGLM的特点
    • L3.3.2 ChatGLM的开发环境
    • L3.3.3 ChatGLM的使用示例
    • L3.4 LLAMA
    • L3.4.1 LLAMA的特点
    • L3.4.2 LLAMA的开发环境
    • L3.4.3 LLAMA的使用示例
    • L3.5 其他大模型介绍

阶段4:AI大模型私有化部署

  • 目标:掌握多种AI大模型的私有化部署,包括多模态和特定领域模型。
  • 内容
    • L4.1 模型私有化部署概述
    • L4.2 模型私有化部署的关键技术
    • L4.3 模型私有化部署的实施步骤
    • L4.4 模型私有化部署的应用场景

学习计划:

  • 阶段1:1-2个月,建立AI大模型的基础知识体系。
  • 阶段2:2-3个月,专注于API应用开发能力的提升。
  • 阶段3:3-4个月,深入实践AI大模型的应用架构和私有化部署。
  • 阶段4:4-5个月,专注于高级模型的应用和部署。
这份完整版的大模型 LLM 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

😝有需要的小伙伴,可以Vx扫描下方二维码免费领取🆓

相关文章:

吴恩达揭秘:编程Agent如何革新软件开发行业

作为 AI 领域的杰出人物,吴恩达教授对编程 Agent 的兴起表示了极大的兴趣。他认为,编程 Agent 有潜力通过自动执行繁琐的任务、提高代码质量和加速开发周期来彻底改变软件开发行业。 本文将深入探讨吴恩达对编程 Agent 的见解, 多代理系统质…...

Study--Oracle-04-SQL练习

一、SQL语句思维导图 二、SQL练习 -- 以employee_id 为排序,列出前5个人 -- FETCH select employee_id,first_name from employees order by employee_id FETCH FIRST 5 rows only; -- 以employee_id 为排序,从第6个人开始 到第10个人 -- offset …...

目前音质最好的麦克风是哪款,一文读懂无线麦克风推荐哪些品牌好

​在自媒体时代,无线领夹麦克风成为自媒体人不可或缺的助手。它帮助我们在各种环境中保持清晰声音,提升创作效率与作品质量。然而,面对众多无线麦克风产品,挑选一款性价比高、性能卓越的款式却成为难题。今天,我将分享…...

Python笔记 异常、模块与包

一、了解异常 异常的概念 什么是异常 当检测到一个错误时,Python解释器就无法继续执行了,反而出现了一些错误的提示,这就是所谓的“异常”,也就是我们常说的BUG。 二、异常的捕获 1.知道为什么要捕获异常 世界上没有完美的程…...

spark查看日志

Logger 当 Spark 任务已经提交到集群运行后&#xff0c;可以通过以下几种方式查看LoggerFactory输出的日志&#xff1a; Web 界面&#xff1a;在 Spark 任务运行时&#xff0c;可以通过访问 Spark 的 Web UI 来查看日志。通常&#xff0c;可以在浏览器中输入http://<drive…...

【LeetCode】每日一题:LRU缓存

请你设计并实现一个满足 LRU (最近最少使用) 缓存 约束的数据结构。 实现 LRUCache 类&#xff1a; LRUCache(int capacity) 以 正整数 作为容量 capacity 初始化 LRU 缓存 int get(int key) 如果关键字 key 存在于缓存中&#xff0c;则返回关键字的值&#xff0c;否则返回 -1 …...

记录一个Xshell使用中Xmanager...X11转发的提示问题

希望文章能给到你启发和灵感&#xff5e; 如果觉得有帮助的话&#xff0c;点赞关注收藏支持一下博主哦&#xff5e; 阅读指南 一、环境说明1.1 硬件环境1.2 软件环境 二、问题和错误三、解决四、理解和延伸一下 一、环境说明 考虑环境因素&#xff0c;大家适当的对比自己的软硬…...

Mamba 模型

建议观看讲解视频&#xff1a;AI大讲堂&#xff1a;革了Transformer的小命&#xff1f;专业拆解【Mamba模型】_哔哩哔哩_bilibili 1. 论文基本信息 2. 创新点 选择性 SSM&#xff0c;和扩展 Mamba 架构&#xff0c;是具有关键属性的完全循环模型&#xff0c;这使得它们适合作…...

30-33、SpringBoot项目部署\属性配置方式\多环境开发(一个文件)\多环境分组(多个文件)

1、打包插件:和springboot的版本保持一致 根pom <build><plugins><!--打包插件--><plugin><groupId>org.springframework.boot</groupId><artifactId>spring-boot-maven-plugin</artifactId><version>3.1.3</versi…...

【PyQt5】一文向您详细介绍 setContentsMargins() 的作用

【PyQt5】一文向您详细介绍 setContentsMargins() 的作用 下滑即可查看博客内容 &#x1f308; 欢迎莅临我的个人主页 &#x1f448;这里是我静心耕耘深度学习领域、真诚分享知识与智慧的小天地&#xff01;&#x1f387; &#x1f393; 博主简介&#xff1a;985高校的普通…...

分页查询前端对接

文章目录 添加角色修改角色当点击修改按钮后,那么就会弹出对话框,所以要设置显示为true点击修改的时候就是 要显示对话框 制作用户管理页面开发后端接口用户查询前端整合新增接口功能实现修改 添加角色 首先添加 添加表单的组件 那么总结一下 就是使用 组件 然后再使用变量接…...

从一万英尺外看libevent(源码刨析)

从一万英尺外看libevent 温馨提示&#xff1a;阅读时间大概二十分钟 前言 Libevent是用于编写高速可移植非阻塞IO应用的库&#xff0c;其设计目标是&#xff1a; 可移植性&#xff1a;使用libevent编写的程序应该可以在libevent支持的所有平台上工作。即使没有好的方式进行非…...

Linux部署SVN

一.下载与安装 &#xff08;1&#xff09;yum安装 yum install subversion &#xff08;2&#xff09;源文件编译安装 ①下载svn源文件 subversion-xxx.tar.gz&#xff08;subversion 源文件&#xff09; subversion-deps-xxx.tar.gz&#xff08;subversion依赖文件&…...

Linux高并发服务器开发(二)系统调用函数

文章目录 1 系统调用2 errno3 虚拟内存空间4 文件描述符5 常用文件IO函数6 阻塞和非阻塞7 lseek 偏移函数8 文件操作函数之stat函数9 文件描述符复制 dup10 fcnlt函数 修改文件属性11 目录相关操作12 时间相关函数 1 系统调用 根据系统调用&#xff0c;获取驱动信息、CPU的信息…...

rk3568 Android 11在系统怎样执行命令获取SN号

目录 1. 使用ADB&#xff08;Android Debug Bridge&#xff09;2. 使用Shell脚本或应用程序3. 使用系统API4. 直接在设备上使用Shell5. getprop使用方法常见属性示例注意事项 在瑞芯微RK3568 Android 11系统中执行命令或获取SN号&#xff08;序列号&#xff09;通常可以通过几种…...

PostgreSQL 性能优化与调优(六)

1. 索引优化 1.1 创建索引 索引可以显著提高查询性能。创建索引的基本语法如下&#xff1a; CREATE INDEX index_name ON table_name (column_name);例如&#xff0c;为 users 表的 username 列创建索引&#xff1a; CREATE INDEX idx_username ON users (username); 1.2 …...

win10 安装openssl并使用openssl创建自签名证书

win10创建自签名证书 下载安装配置openssl 下载地址&#xff1a; https://slproweb.com/download/Win64OpenSSL-3_3_1.exe https://slproweb.com/products/Win32OpenSSL.html 完成后安装&#xff0c;一路next&#xff0c;到达选位置的之后选择安装的位置&#xff0c;我这里选…...

【OpenCV 图像处理 Python版】图像处理的基本操作

文章目录 1.图像的 IO 操作1.1 图像读取 imread1.2 图像显示1.2.1 opencv 方式1.2.2 matplotlib 方式 1.3 图像保存 imwrite 2.绘制几何图形1. 绘制直线2. 绘制矩形3. 绘制圆形4. 绘制多边形5. 添加文字 3.获取并修改图像中的像素点3.1 获取像素值3.2 修改像素值3.3 获取和修改…...

HarmonyOS应用开发学习经验

一、HarmonyOS学习官网 开发者能力认证 HarmonyOS应用开发者基础认证6月之前的学习资源官网已经关闭过期&#xff0c;大家不要慌&#xff0c;官方更新了最新资源&#xff0c;但是&#xff0c;对于之前没有学习完的学员不友好&#xff0c;存在知识断片的现象&#xff0c;建议官…...

LLM大语言模型应用方案之RAG检索增强生成的实现步骤。

0.我理解的RAG 什么是RAG&#xff1f; RAG的全称是“检索增强生成模型”&#xff08;Retrieval-Augmented Generation&#xff09;。这是一种特别聪明的大语言模型。 RAG是怎么工作的呢&#xff1f; 1.检索&#xff1a;当你问RAG一个问题时&#xff0c;它会先去“图书…...

【python学习】学习python的小项目

学习Python时&#xff0c;通过完成一些小项目可以帮助你巩固知识并提升实践能力。以下是一些适合学习Python的小项目建议&#xff1a; 命令行计算器&#xff1a; 创建一个简单的命令行计算器&#xff0c;可以执行基本的算术运算&#xff08;加、减、乘、除&#xff09;。使用i…...

java-冒泡排序 1

## Java中的冒泡排序 ### 1. 冒泡排序的基本概念 冒泡排序&#xff08;Bubble Sort&#xff09;是一种简单且直观的排序算法。它通过重复地遍历待排序的列表&#xff0c;比较相邻的元素并交换它们的位置&#xff0c;使较大的元素逐步从列表的一端移动到另一端&#xff0c;就像…...

【STM32】USART串口通讯

1.USART简介 STM32芯片具有多个USART外设用于串口通讯&#xff0c;它是 Universal Synchronous Asynchronous Receiver and Transmitter的缩写&#xff0c; 即通用同步异步收发器可以灵活地与外部设备进行全双工数据交换。有别于USART&#xff0c; 它还有具有UART外设(Univers…...

Qt6中如何将QList转为QSet?

QSet是一个具有唯一值的哈希集合。比较少用。比较有用的是QSet里面的intersect查找两个集合中不同元素&#xff0c;并合并。 转换过程比较简单&#xff0c;第一种是直接用迭代器。 QSet<int> set(list.begin(), list.end()); 第二种就是逐一遍历赋值&#xff1a; QLi…...

aspectj:AOP编程备忘录-切面定义的注意事项

AOP编程时定义切面时需要注意的事 Around 以Around注解拦截构造方法(Constructor)时切面定义只能用call方式而不能是execution&#xff0c;否则 ProceedingJoinPoint.proceed()返回的是null&#xff0c;得不到构造的实例。 execution execution切入点要修改对象内部&#x…...

大数据面试题之Hive(1)

目录 说下为什么要使用Hive?Hive的优缺点?Hive的作用是什么? 说下Hive是什么?跟数据仓库区别? Hive架构 Hive内部表和外部表的区别? 为什么内部表的删除&#xff0c;就会将数据全部删除&#xff0c;而外部表只删除表结构?为什么用外部表更好? Hive建表语句?创建表…...

【Git】分布式版本控制工具

一、简介 二、目标 Git分布式版本控制工具 一、简介 Git是一种分布式版本控制系统&#xff0c;用于跟踪和管理源代码的变化。它由林纳斯托瓦兹&#xff08;Linus Torvalds&#xff09;于2005年开发&#xff0c;并迅速成为最流行的版本控制工具之一。以下是关于Git的一些关键…...

排序之插入排序----直接插入排序和希尔排序(1)

个人主页&#xff1a;C忠实粉丝 欢迎 点赞&#x1f44d; 收藏✨ 留言✉ 加关注&#x1f493;本文由 C忠实粉丝 原创 排序之插入排序----直接插入排序和希尔排序(1) 收录于专栏【数据结构初阶】 本专栏旨在分享学习数据结构学习的一点学习笔记&#xff0c;欢迎大家在评论区交流讨…...

快速创建条形热力图

Excel中的条件格式可以有效的凸显数据特征&#xff0c;如下图中B列所示。 现在需要使用图表展现热力条形图&#xff0c;如下图所示。由于颜色有多个过渡色&#xff0c;因此手工逐个设置数据条的颜色&#xff0c;基本上是不可能完成的任务&#xff0c;使用VBA代码可以快速创建这…...

go switch 与 interface

go switch 与 interface 前言 前言 github.com/google/cel-go/common/types/ref type Val interface {// ConvertToNative converts the Value to a native Go struct according to the// reflected type description, or error if the conversion is not feasible.ConvertTo…...