当前位置: 首页 > news >正文

LangChain让LLM带上记忆

最近两年,我们见识了“百模大战”,领略到了大型语言模型(LLM)的风采,但它们也存在一个显著的缺陷:没有记忆。

在对话中,无法记住上下文的 LLM 常常会让用户感到困扰。本文探讨如何利用 LangChain,快速为 LLM 添加记忆能力,提升对话体验。

LangChain 是 LLM 应用开发领域的最大社区和最重要的框架。

1. LLM 固有缺陷,没有记忆

当前的 LLM 非常智能,在理解和生成自然语言方面表现优异,但是有一个显著的缺陷:没有记忆

LLM 的本质是基于统计和概率来生成文本,对于每次请求,它们都将上下文视为独立事件。这意味着当你与 LLM 进行对话时,它不会记住你之前说过的话,这就导致了 LLM 有时表现得不够智能。

这种“无记忆”属性使得 LLM 无法在长期对话中有效跟踪上下文,也无法积累历史信息。比如,当你在聊天过程中提到一个人名,后续再次提及该人时,LLM 可能会忘记你之前的描述。

本着发现问题解决问题的原则,既然没有记忆,那就给 LLM 装上记忆吧。

2. 记忆组件的原理

2.1. 没有记忆的烦恼

当我们与 LLM 聊天时,它们无法记住上下文信息,比如下图的示例:

img

2.2. 原理

如果将已有信息放入到 memory 中,每次跟 LLM 对话时,把已有的信息丢给 LLM,那么 LLM 就能够正确回答,见如下示例:

img

目前业内解决 LLM 记忆问题就是采用了类似上图的方案,即:将每次的对话记录再次丢入到 Prompt 里,这样 LLM 每次对话时,就拥有了之前的历史对话信息。

但如果每次对话,都需要自己手动将本次对话信息继续加入到history信息中,那未免太繁琐。有没有轻松一些的方式呢?有,LangChain!LangChain 对记忆组件做了高度封装,开箱即用。

2.3. 长期记忆和短期记忆

在解决 LLM 的记忆问题时,有两种记忆方案,长期记忆和短期记忆。

  • 短期记忆:基于内存的存储,容量有限,用于存储临时对话内容。
  • 长期记忆:基于硬盘或者外部数据库等方式,容量较大,用于存储需要持久的信息。

3. LangChain 让 LLM 记住上下文

LangChain 提供了灵活的内存组件工具来帮助开发者为 LLM 添加记忆能力。

3.1. 单独用 ConversationBufferMemory 做短期记忆

Langchain 提供了 ConversationBufferMemory 类,可以用来存储和管理对话。

ConversationBufferMemory 包含input变量和output变量,input代表人类输入,output代表 AI 输出。

每次往ConversationBufferMemory组件里存入对话信息时,都会存储到history的变量里。

img

3.2. 利用 MessagesPlaceholder 手动添加 history

python复制代码from langchain.memory import ConversationBufferMemorymemory = ConversationBufferMemory(return_messages=True)
memory.load_memory_variables({})memory.save_context({"input": "我的名字叫张三"}, {"output": "你好,张三"})
memory.load_memory_variables({})memory.save_context({"input": "我是一名 IT 程序员"}, {"output": "好的,我知道了"})
memory.load_memory_variables({})from langchain.prompts import ChatPromptTemplate
from langchain.prompts import ChatPromptTemplate, MessagesPlaceholderprompt = ChatPromptTemplate.from_messages([("system", "你是一个乐于助人的助手。"),MessagesPlaceholder(variable_name="history"),("human", "{user_input}"),]
)
chain = prompt | modeluser_input = "你知道我的名字吗?"
history = memory.load_memory_variables({})["history"]chain.invoke({"user_input": user_input, "history": history})user_input = "中国最高的山是什么山?"
res = chain.invoke({"user_input": user_input, "history": history})
memory.save_context({"input": user_input}, {"output": res.content})res = chain.invoke({"user_input": "我们聊得最后一个问题是什么?", "history": history})

执行结果如下:

img

3.3. 利用 ConversationChain 自动添加 history

我们利用 LangChain 的ConversationChain对话链,自动添加history的方式添加临时记忆,无需手动添加。一个实际上就是将一部分繁琐的小功能做了高度封装,这样多个链就可以组合形成易用的强大功能。这里的优势一下子就体现出来了:

ini复制代码from langchain.chains import ConversationChain
from langchain.memory import ConversationBufferMemory
from langchain.prompts import ChatPromptTemplate, MessagesPlaceholdermemory = ConversationBufferMemory(return_messages=True)
chain = ConversationChain(llm=model, memory=memory)
res = chain.invoke({"input": "你好,我的名字是张三,我是一名程序员。"})
res['response']res = chain.invoke({"input":"南京是哪个省?"})
res['response']res = chain.invoke({"input":"我告诉过你我的名字,是什么?,我的职业是什么?"})
res['response']

执行结果如下,可以看到利用ConversationChain对话链,可以让 LLM 快速拥有记忆:

img

3.4. 对话链结合 PromptTemplate 和 MessagesPlaceholder

在 Langchain 中,MessagesPlaceholder是一个占位符,用于在对话模板中动态插入上下文信息。它可以帮助我们灵活地管理对话内容,确保 LLM 能够使用最上下文来生成响应。

采用ConversationChain对话链结合PromptTemplateMessagesPlaceholder,几行代码就可以轻松让 LLM 拥有短时记忆。

ini复制代码prompt = ChatPromptTemplate.from_messages([("system", "你是一个爱撒娇的女助手,喜欢用可爱的语气回答问题。"),MessagesPlaceholder(variable_name="history"),("human", "{input}"),]
)
memory = ConversationBufferMemory(return_messages=True)
chain = ConversationChain(llm=model, memory=memory, prompt=prompt)res = chain.invoke({"input": "今天你好,我的名字是张三,我是你的老板"})
res['response']res = chain.invoke({"input": "帮我安排一场今天晚上的高规格的晚饭"})
res['response']res = chain.invoke({"input": "你还记得我叫什么名字吗?"})
res['response']

img

4. 使用长期记忆

短期记忆在会话关闭或者服务器重启后,就会丢失。如果想长期记住对话信息,只能采用长期记忆组件。

LangChain 支持多种长期记忆组件,比如ElasticsearchMongoDBRedis等,下面以Redis为例,演示如何使用长期记忆。

ini复制代码from langchain_community.chat_message_histories import RedisChatMessageHistory
from langchain_core.prompts import ChatPromptTemplate, MessagesPlaceholder
from langchain_core.runnables.history import RunnableWithMessageHistory
from langchain_openai import ChatOpenAImodel = ChatOpenAI(model="gpt-3.5-turbo",openai_api_key="sk-xxxxxxxxxxxxxxxxxxx",openai_api_base="https://api.aigc369.com/v1",
)prompt = ChatPromptTemplate.from_messages([("system", "你是一个擅长{ability}的助手"),MessagesPlaceholder(variable_name="history"),("human", "{question}"),]
)chain = prompt | modelchain_with_history = RunnableWithMessageHistory(chain,# 使用redis存储聊天记录lambda session_id: RedisChatMessageHistory(session_id, url="redis://10.22.11.110:6379/3"),input_messages_key="question",history_messages_key="history",
)# 每次调用都会保存聊天记录,需要有对应的session_id
chain_with_history.invoke({"ability": "物理", "question": "地球到月球的距离是多少?"},config={"configurable": {"session_id": "baily_question"}},
)chain_with_history.invoke({"ability": "物理", "question": "地球到太阳的距离是多少?"},config={"configurable": {"session_id": "baily_question"}},
)chain_with_history.invoke({"ability": "物理", "question": "地球到他俩之间谁更近"},config={"configurable": {"session_id": "baily_question"}},
)

LLM 的回答如下,同时关闭 session 后,直接再次提问最后一个问题,LLM 仍然能给出正确答案。

只要configurable配置的session_id能对应上,LLM 就能给出正确答案。

img

然后,继续查看redis存储的数据,可以看到数据在 redis 中是以 list的数据结构存储的。

img

5. 总结

本文介绍了 LLM 缺乏记忆功能的固有缺陷,以及记忆组件的原理,还讨论了如何利用 LangChain 给 LLM 装上记忆组件,让 LLM 能够在对话中更好地保持上下文。希望对你有帮助!

读者福利:如果大家对大模型感兴趣,这套大模型学习资料一定对你有用

对于0基础小白入门:

如果你是零基础小白,想快速入门大模型是可以考虑的。

一方面是学习时间相对较短,学习内容更全面更集中。
二方面是可以根据这些资料规划好学习计划和方向。

资源分享

图片

大模型AGI学习包

图片

图片

资料目录

  1. 成长路线图&学习规划
  2. 配套视频教程
  3. 实战LLM
  4. 人工智能比赛资料
  5. AI人工智能必读书单
  6. 面试题合集

人工智能\大模型入门学习大礼包》,可以扫描下方二维码免费领取

1.成长路线图&学习规划

要学习一门新的技术,作为新手一定要先学习成长路线图方向不对,努力白费

对于从来没有接触过网络安全的同学,我们帮你准备了详细的学习成长路线图&学习规划。可以说是最科学最系统的学习路线,大家跟着这个大的方向学习准没问题。

图片

2.视频教程

很多朋友都不喜欢晦涩的文字,我也为大家准备了视频教程,其中一共有21个章节,每个章节都是当前板块的精华浓缩

图片

3.LLM

大家最喜欢也是最关心的LLM(大语言模型)

图片

人工智能\大模型入门学习大礼包》,可以扫描下方二维码免费领取

相关文章:

LangChain让LLM带上记忆

最近两年,我们见识了“百模大战”,领略到了大型语言模型(LLM)的风采,但它们也存在一个显著的缺陷:没有记忆。 在对话中,无法记住上下文的 LLM 常常会让用户感到困扰。本文探讨如何利用 LangCha…...

Word恢复历史文档,记好4个方法就足够

“我正在准备一个重要的报告,但是电脑突然就崩溃了,导致我的文档还没保存就被关闭了,大家有什么方法可以恢复Word历史文档吗?快给我出出主意吧!” 在数字化时代,文档编辑和保存已经成为我们日常工作和学习中…...

收银系统源码-千呼新零售2.0【线上营销】

千呼新零售2.0系统是零售行业连锁店一体化收银系统,包括线下收银线上商城连锁店管理ERP管理商品管理供应商管理会员营销等功能为一体,线上线下数据全部打通。 适用于商超、便利店、水果、生鲜、母婴、服装、零食、百货等连锁店使用。 详细介绍请查看&a…...

OnlyOffice测评

官方链接: https://www.onlyoffice.com/zh/office-suite.aspx https://www.onlyoffice.com/zh/pdf-editor.aspx OnlyOffice:引领办公效率的新标杆 在数字化时代的浪潮中,办公软件已经成为我们日常工作中不可或缺的一部分。然而,…...

UDS - 8 Application layer protocol

8 应用层协议 来自:ISO 14229-1-2020.pdf 8.1 一般定义 应用层协议应始终是确认消息传输,这意味着对于从客户端发送的每个服务请求,服务器应发送一个或多个相应的响应。 此规则的唯一例外是使用功能寻址或请求/指示指定不生成响应/确认的少数情况。为了不给系统带来许多不…...

二叉树公共最近祖先

文章目录 1. **二叉搜索树(Binary Search Tree, BST)**2. **一般二叉树****递归方法**:**迭代方法**: 案例展示二叉搜索树(BST)中查找LCA一般二叉树中查找LCA1. **使用哈希表存储父节点信息**2. **处理多个查询**3. **异常处理**结…...

智慧运维系统指导规范

随着信息技术的迅猛发展,智慧运维系统在现代企业中扮演着越来越重要的角色。为了提高运维效率、保障系统稳定运行,并制定一套科学、合理的智慧运维系统指导规范至关重要。本规范旨在为企业提供一套全面、系统的智慧运维管理方法和操作准则,以…...

最新自助下单彩虹云商城系统源码,含小储云商城模板免授权

最新彩虹商城源码,含小储云商城模板免授权,试用了一下还行,具体的大家可以看看 源码下载:https://download.csdn.net/download/m0_66047725/89405387 更多资源下载:关注我。...

头条系统-05-延迟队列精准发布文章-概述添加任务(db和redis实现延迟任务)、取消拉取任务定时刷新(redis管道、分布式锁setNx)

文章目录 延迟任务精准发布文章1)文章定时发布2)延迟任务概述2.1)什么是延迟任务2.2)技术对比2.2.1)DelayQueue2.2.2)RabbitMQ实现延迟任务2.2.3)redis实现 3)redis实现延迟任务4)延迟任务服务实现4.1)搭建heima-leadnews-schedule模块4.2)数据库准备4.3)安装redis4.4)项目集成…...

.gitignore git添加忽略文件

在项目的根目录下创建一个名为 .gitignore 的文件。在这个文件中,列出您希望Git忽略的文件和文件夹的名称或模式。 下面是一些基本的步骤和规则: 创建 .gitignore 文件:在项目根目录下创建一个名为 .gitignore 的文件。如果没有这个文件&…...

面向遥感图像的多阶段特征融合目标检测方法

源自:电子学报 作者:陈立 张帆 郭威 黄赟 注:若出现无法显示完全的情况,可 V 搜索“人工智能技术与咨询”查看完整文章 摘 要 遥感图像目标具有多尺度、大横纵比、多角度等特性,给传统的目标检测方法带来了新的…...

操作系统面试篇一

很多读者抱怨计算操作系统的知识点比较繁杂,自己也没有多少耐心去看,但是面试的时候又经常会遇到。所以,我带着我整理好的操作系统的常见问题来啦!这篇文章总结了一些我觉得比较重要的操作系统相关的问题比如 用户态和内核态、系统…...

OPenFast软件中的NRELOffshrBsline5MW_Onshore_ServoDyn.dat文件详解

我先简单概括一下,后续我再详细总结:文件“NRELOffshrBsline5MW_Onshore_ServoDyn.dat”是用于NREL 5.0 MW基准风力发电机的ServoDyn模块的输入文件。它定义了仿真控制、变桨控制、发电机和扭矩控制、偏航控制以及输出设置等各种参数。以下是主要内容的总…...

搭建rtmp/rtsp流媒体服务器的步骤

很多文章介绍使用ffmpeg推送和拉流,执行推流命令: D:\software\ffmpeg-7.0.1-full_build\bin\ffmpeg.exe -re -stream_loop -1 -i "D:\Video\汪汪队立大功\S07\001.mp4" -vcodec h264 -acodec aac -f flv rtmp://127.0.0.1/live/test110 经常…...

vue自定义事件传递数据

页面应用一个组件,采用自定义事件来传递参数 $emit是Vue实例的一个方法,它用于触发自定义事件。这些事件可以被父组件监听到,从而实现子组件向父组件的通信。 这种方法的好处在于,它可以让数据的流动保持单向,有助于…...

TensorBoard 安装与启动

安装&#xff1a;pip install tensorboard启动&#xff1a;tensorboard --logdir<events_directory_name> events_directory_name 为运行 tensorboard 后&#xff0c;产生的 events 文件所在的路径 博客参考&#xff1a;TensorBoard最全使用教程...

云计算运维工程师的突发状况处理

云计算运维工程师在应对突发的故障和紧急情况时,需要采取一系列迅速而有效的措施来最小化服务中断的时间并恢复系统的稳定性。 以下是一些关键步骤和策略: 快速响应: 立即识别并确认故障的性质和范围。通知团队成员和相关的利益相关者,确保所有人了解当前情况。故障诊断:…...

【CSS in Depth 2 精译】1.6 本章小结

1.6 本章小结 浏览器遵循层叠规则来确定哪些样式在哪些元素上生效&#xff1b;选择器优先级由选择器中的 id 数、class 类的个数以及标签名的个数来共同确定。优先级更高的声明将覆盖较低声明&#xff1b;当某些属性没有层叠值时&#xff0c;它们会从父元素继承一个样式值。这…...

FFmpeg源码:ff_h2645_extract_rbsp函数分析

一、ff_h2645_extract_rbsp函数的声明 ff_h2645_extract_rbsp函数的声明放在FFmpeg源码&#xff08;本文演示用的FFmpeg源码版本为5.0.3&#xff0c;该ffmpeg在CentOS 7.5上通过10.2.1版本的gcc编译&#xff09;的头文件libavcodec/h2645_parse.h中。 /*** Extract the raw (u…...

关于 AD21导入电子元器件放置“3D体”STEP模型失去3D纹理贴图 的解决方法

若该文为原创文章&#xff0c;转载请注明原文出处 本文章博客地址&#xff1a;https://hpzwl.blog.csdn.net/article/details/139969415 长沙红胖子Qt&#xff08;长沙创微智科&#xff09;博文大全&#xff1a;开发技术集合&#xff08;包含Qt实用技术、树莓派、三维、OpenCV…...

【网络安全产品大调研系列】2. 体验漏洞扫描

前言 2023 年漏洞扫描服务市场规模预计为 3.06&#xff08;十亿美元&#xff09;。漏洞扫描服务市场行业预计将从 2024 年的 3.48&#xff08;十亿美元&#xff09;增长到 2032 年的 9.54&#xff08;十亿美元&#xff09;。预测期内漏洞扫描服务市场 CAGR&#xff08;增长率&…...

【C++从零实现Json-Rpc框架】第六弹 —— 服务端模块划分

一、项目背景回顾 前五弹完成了Json-Rpc协议解析、请求处理、客户端调用等基础模块搭建。 本弹重点聚焦于服务端的模块划分与架构设计&#xff0c;提升代码结构的可维护性与扩展性。 二、服务端模块设计目标 高内聚低耦合&#xff1a;各模块职责清晰&#xff0c;便于独立开发…...

Redis的发布订阅模式与专业的 MQ(如 Kafka, RabbitMQ)相比,优缺点是什么?适用于哪些场景?

Redis 的发布订阅&#xff08;Pub/Sub&#xff09;模式与专业的 MQ&#xff08;Message Queue&#xff09;如 Kafka、RabbitMQ 进行比较&#xff0c;核心的权衡点在于&#xff1a;简单与速度 vs. 可靠与功能。 下面我们详细展开对比。 Redis Pub/Sub 的核心特点 它是一个发后…...

2025季度云服务器排行榜

在全球云服务器市场&#xff0c;各厂商的排名和地位并非一成不变&#xff0c;而是由其独特的优势、战略布局和市场适应性共同决定的。以下是根据2025年市场趋势&#xff0c;对主要云服务器厂商在排行榜中占据重要位置的原因和优势进行深度分析&#xff1a; 一、全球“三巨头”…...

C++实现分布式网络通信框架RPC(2)——rpc发布端

有了上篇文章的项目的基本知识的了解&#xff0c;现在我们就开始构建项目。 目录 一、构建工程目录 二、本地服务发布成RPC服务 2.1理解RPC发布 2.2实现 三、Mprpc框架的基础类设计 3.1框架的初始化类 MprpcApplication 代码实现 3.2读取配置文件类 MprpcConfig 代码实现…...

绕过 Xcode?使用 Appuploader和主流工具实现 iOS 上架自动化

iOS 应用的发布流程一直是开发链路中最“苹果味”的环节&#xff1a;强依赖 Xcode、必须使用 macOS、各种证书和描述文件配置……对很多跨平台开发者来说&#xff0c;这一套流程并不友好。 特别是当你的项目主要在 Windows 或 Linux 下开发&#xff08;例如 Flutter、React Na…...

UE5 音效系统

一.音效管理 音乐一般都是WAV,创建一个背景音乐类SoudClass,一个音效类SoundClass。所有的音乐都分为这两个类。再创建一个总音乐类&#xff0c;将上述两个作为它的子类。 接着我们创建一个音乐混合类SoundMix&#xff0c;将上述三个类翻入其中&#xff0c;通过它管理每个音乐…...

qt+vs Generated File下的moc_和ui_文件丢失导致 error LNK2001

qt 5.9.7 vs2013 qt add-in 2.3.2 起因是添加一个新的控件类&#xff0c;直接把源文件拖进VS的项目里&#xff0c;然后VS卡住十秒&#xff0c;然后编译就报一堆 error LNK2001 一看项目的Generated Files下的moc_和ui_文件丢失了一部分&#xff0c;导致编译的时候找不到了。因…...

__VUE_PROD_HYDRATION_MISMATCH_DETAILS__ is not explicitly defined.

这个警告表明您在使用Vue的esm-bundler构建版本时&#xff0c;未明确定义编译时特性标志。以下是详细解释和解决方案&#xff1a; ‌问题原因‌&#xff1a; 该标志是Vue 3.4引入的编译时特性标志&#xff0c;用于控制生产环境下SSR水合不匹配错误的详细报告1使用esm-bundler…...

python可视化:俄乌战争时间线关键节点与深层原因

俄乌战争时间线可视化分析&#xff1a;关键节点与深层原因 俄乌战争是21世纪欧洲最具影响力的地缘政治冲突之一&#xff0c;自2022年2月爆发以来已持续超过3年。 本文将通过Python可视化工具&#xff0c;系统分析这场战争的时间线、关键节点及其背后的深层原因&#xff0c;全面…...