利用圆上两点和圆半径求解圆心坐标
已知圆上两点P1,P2,坐标依次为 ( x 1 , y 1 ) , ( x 2 , y 2 ) (x_1,y_1),(x_2,y_2) (x1,y1),(x2,y2),圆的半径为 r r r,求圆心的坐标。

假定P1,P2为任意两点,则两点连成线段的中点坐标是
x m i d = ( x 1 + x 2 ) / 2 x_{mid} = (x_1+x_2)/2 xmid=(x1+x2)/2
y m i d = ( y 1 + y 2 ) / 2 y_{mid} = (y_1+y_2)/2 ymid=(y1+y2)/2
P1,P2连线的斜率是
k = ( y 1 − y 2 ) / ( x 1 − x 2 ) k = (y_1-y_2)/(x_1-x_2) k=(y1−y2)/(x1−x2)
P1,P2连线的垂线斜率为
m = − 1 / k m = -1/k m=−1/k
则,圆心所在的直线方程是
y − y m i d = m ∗ ( x − x m i d ) y-y_{mid} = m * (x - x_{mid}) y−ymid=m∗(x−xmid)
圆心 ( x 0 , y 0 ) (x_0,y_0) (x0,y0)同时满足
( x 0 − x 1 ) 2 + ( y 0 − y 1 ) 2 = r 2 (x_0-x_1)^2+(y_0-y_1)^2=r^2 (x0−x1)2+(y0−y1)2=r2和 y 0 − y m i d = m ∗ ( x 0 − x m i d ) y_0-y_{mid} = m * (x_0 - x_{mid}) y0−ymid=m∗(x0−xmid)
或
( x 0 − x 2 ) 2 + ( y 0 − y 2 ) 2 = r 2 (x_0-x_2)^2+(y_0-y_2)^2=r^2 (x0−x2)2+(y0−y2)2=r2和 y 0 − y m i d = m ∗ ( x 0 − x m i d ) y_0-y_{mid} = m * (x_0 - x_{mid}) y0−ymid=m∗(x0−xmid)
将直线方程
y 0 = m ∗ ( x 0 − x m i d ) − y m i d y_0 = m*(x_0 -x_{mid})-y_{mid} y0=m∗(x0−xmid)−ymid
代入圆的公式,
得到
( x 0 − x 1 ) 2 + [ m ∗ ( x 0 − x m i d ) + y m i d − y 1 ] 2 = r 2 (x_0-x_1)^2+[m * (x_0-x_{mid})+y_{mid}-y_1]^2=r^2 (x0−x1)2+[m∗(x0−xmid)+ymid−y1]2=r2
展开,
x 0 2 − 2 x 0 x 1 + x 2 2 + m 2 x 0 2 + 2 m x 0 ∗ ( y m i d − m ∗ x m i d − y 1 ) + ( y m i d − m ∗ x m i d − y 1 ) 2 = r 2 x_0^2-2x_0x_1+x_2^2+m^2x_0^2+2mx_0*(y_{mid}-m*x_{mid}-y_1)+(y_{mid}-m*x_{mid}-y_1)^2=r^2 x02−2x0x1+x22+m2x02+2mx0∗(ymid−m∗xmid−y1)+(ymid−m∗xmid−y1)2=r2
整理,
( 1 + m 2 ) x 0 2 + [ 2 m ( y m i d − m ∗ x m i d − y 1 ) − 2 x 1 ] ∗ x 0 + ( y m i d − m ∗ x m i d − y 1 ) 2 + x 1 2 − r 2 = 0 (1+m^2)x_0^2+[2m(y_{mid}-m*x_{mid}-y_1)-2x_1]*x_0+(y_{mid}-m*x_{mid}-y_1)^2+x_1^2-r^2 = 0 (1+m2)x02+[2m(ymid−m∗xmid−y1)−2x1]∗x0+(ymid−m∗xmid−y1)2+x12−r2=0
令,
A = 1 + m 2 A= 1+m^2 A=1+m2
B = 2 m ( y m i d − m ∗ x m i d − y 1 ) − 2 x 1 B= 2m(y_{mid}-m*x_{mid}-y_1)-2x_1 B=2m(ymid−m∗xmid−y1)−2x1
C = ( y m i d − m ∗ x m i d − y 1 ) 2 + x 1 2 − r 2 C= (y_{mid}-m*x_{mid}-y_1)^2+x_1^2-r^2 C=(ymid−m∗xmid−y1)2+x12−r2
则,
x 0 = − B ± B 2 − 4 A C 2 A x_0=\frac{-B± \sqrt{B^2-4AC}}{2A} x0=2A−B±B2−4AC
y 0 = m ∗ ( x 0 − x m i d ) + y m i d y_0= m*(x_0-x_{mid})+y_{mid} y0=m∗(x0−xmid)+ymid
x_1 = 2
y_1 = 4
x_2 = 4
y_2 = 2
r = 2
if (x_1 - x_2 == 0):print('横坐标相同,求解可能出错')exit()
else:x_mid = (x_1 + x_2) / 2y_mid = (y_1 + y_2) / 2k = (y_1-y_2)/(x_1-x_2)m = -1/kA = 1 + m**2B = 2 * m *(y_mid - m * x_mid - y_1)- 2 * x_1C = (y_mid - m * x_mid - y_1)**2 + x_1**2 - r**2print(A, B, C)x_c1 = (-B + ((B**2-4*A*C)**0.5))/(2*A)x_c2 = (-B - ((B**2-4*A*C)**0.5))/(2*A)y_c1 = m * (x_c1 - x_mid) + y_midy_c2 = m * (x_c2 - x_mid) + y_midprint('圆心坐标:',(x_c1,y_c1))print('圆心坐标:',(x_c2,y_c2))
运行结果:

InsCode
相关文章:
利用圆上两点和圆半径求解圆心坐标
已知圆上两点P1,P2,坐标依次为 ( x 1 , y 1 ) , ( x 2 , y 2 ) (x_1,y_1),(x_2,y_2) (x1,y1),(x2,y2),圆的半径为 r r r,求圆心的坐标。 假定P1,P2为任意两点,则两点连成线段的中点坐标是 x m i …...
从ChatGPT代码执行逃逸到LLMs应用安全思考
摘要 11月7日OpenAI发布会后,GPT-4的最新更新为用户带来了更加便捷的功能,包括Python代码解释器、网络内容浏览和图像生成能力。这些创新不仅开辟了人工智能应用的新境界,也展示了GPT-4在处理复杂任务方面的惊人能力。然而,与所有…...
Python入门-基础知识-变量
1.标识符与关键字 Python语言规定,标识符由字母、数字和下画线组成,且不允许以数字开头。合法的标识符可以 是student_1、 addNumber、num等,而3number、2_student等是不合法的标识符。在使用标识符时应注意以下几点。 (1)命名时应遵循见名知…...
设计模式原则——接口隔离原则
设计模式原则 设计模式示例代码库地址: https://gitee.com/Jasonpupil/designPatterns 接口隔离原则 要求程序员尽量将臃肿庞大的接口拆分为更小的和更具体的接口,让接口中只包含客户感兴趣的方法接口隔离原则的目标是降低类或模块之间的耦合度&…...
MySQL数据库——在Centos7环境安装
MySQL在Centos7环境安装 1.切换root用户 安装与卸载中,用户全部切换成为root,安装好后,普通用户也能使用 2.卸载不要的环境 要将自己环境中有关mysql的全都删除,避免安装过程中被影响 ps axj | grep mariadb 先检查是否有mari…...
怎样规避液氮容器内部结霜的问题
液氮容器内部结霜问题一直是我们在使用液氮储存罐时遇到的一个棘手难题。液氮的极低温度使得容器内部很容易产生结霜现象,这不仅影响了容器的正常使用,还可能对内部样品或设备造成损坏。因此,如何有效规避液氮容器内部结霜问题成为了每个使用…...
冶金工业5G智能工厂工业物联数字孪生平台,推进制造业数字化转型
冶金工业5G智能工厂工业物联数字孪生平台,推进制造业数字化转型。传统生产方式难以满足现代冶金工业的发展需求,数字化转型成为必然趋势。通过引入5G、工业物联网和数字孪生等先进技术,冶金工业可以实现生产过程智能化、高效化和绿色化&#…...
一文入门机器学习参数调整实操
作者前言: 通过向身边的同事大佬请教之后,大佬指点我把本文的宗旨从“参数调优”改成了“参数调整”。实在惭愧,暂时还没到能“调优”的水平,本文只能通过实操演示“哪些操作会对数据训练产生影响”,后续加深学习之后,…...
基于51单片机的银行排队呼叫系统设计
一.硬件方案 本系统是以排队抽号顺序为核心,客户利用客户端抽号,工作人员利用叫号端叫号;通过显示器及时显示当前所叫号数,客户及时了解排队信息,通过合理的程序结构来执行排队抽号。电路主要由51单片机最小系统LCD12…...
JXCategoryView的使用总结
一、初始化 -(JXCategoryTitleView *)categoryView{if (!_categoryView) {_categoryView [[JXCategoryTitleView alloc] init];_categoryView.delegate self;_categoryView.titleDataSource self;_categoryView.averageCellSpacingEnabled NO; //是否平均分配项目之间的间…...
Centos9 安装VBox增强功能问题
安装步骤 更新gcc 首先手动更新gcc,防止无法兼容最新版本的内核,我这里将gcc 11更新到gcc 13 1.首先更新当前gcc和支持 yum install -y gcc gcc-c 2.下载新版本gcc压缩包 wget http://ftp.gnu.org/gnu/gcc/gcc-13.1.0/gcc-13.1.0.tar.gz 解压到usr ta…...
【JVM】Java虚拟机运行时数据分区介绍
JVM 分区(运行时数据区域) 文章目录 JVM 分区(运行时数据区域)前言1. 程序计数器2. Java 虚拟机栈3. 本地方法栈4. Java 堆5. 方法区6. 运行时常量池7. 直接内存 前言 之前在说多线程的时候,提到了JVM虚拟机的分区内存…...
大数据面试题之Kafka(2)
目录 Kafka的工作原理? Kafka怎么保证数据不丢失,不重复? Kafka分区策略 Kafka如何尽可能保证数据可靠性? Kafka数据丢失怎么处理? Kafka如何保证全局有序? 生产者消费者模式与发布订阅模式有何异同? Kafka的消费者组是如何消费数据的 Kafka的…...
前端面试题(基础篇十一)
一、DOCTYPE 的作用是什么? <!DOCTYPE> 声明一般位于文档的第一行,它的作用主要是告诉浏览器以什么样的模式来解析文档。一般指定了之后会以标准模式来进行文档解析,否则就以兼容模式进行解析。在标准模式下,浏览器的解析规…...
【论文阅读】Answering Label-Constrained Reachability Queries via Reduction Techniques
Cai Y, Zheng W. Answering Label-Constrained Reachability Queries via Reduction Techniques[C]//International Conference on Database Systems for Advanced Applications. Cham: Springer Nature Switzerland, 2023: 114-131. Abstract 许多真实世界的图都包含边缘标签…...
Git Flow 工作流学习要点
Git Flow 工作流学习要点 Git Flow — 流程图Git Flow — 操作指令优点:缺点:Git Flow 分支类型Git Flow 工作流程简述关于 feature 分支关于 Release 分支关于 hotfix 分支 总结 Git Flow — 流程图 图片来源:https://nvie.com/posts/a-succ…...
blender 快捷键 常见问题
一、快捷键 平移视图:Shift 鼠标中键旋转视图:鼠标中键缩放视图:鼠标滚动框选放大模型:Shift B线框预览和材质预览切换:Shift Z 二、常见问题 问题:导入模型成功,但是场景中看不到。 解…...
HTTP详解:TCP三次握手和四次挥手
一、TCP协议概述 TCP协议是互联网协议栈中传输层的核心协议之一,它提供了一种可靠的数据传输方式,确保数据包按顺序到达,并且没有丢失或重复。TCP的主要特点包括: 面向连接:TCP在传输数据之前需要建立连接。可靠传输&…...
详解HTTP:有了HTTP,为何需要WebSocket?
在日常生活中,HTTP 常用于请求数据。例如,当你打开一个天气预报网站时,浏览器会发送一个 HTTP 请求到服务器,请求当前的天气数据,服务器返回响应,浏览器解析并显示这些数据。 但是,当涉及到需要…...
Spring Boot 启动流程是怎么样的
引言 SpringBoot是一个广泛使用的Java框架,旨在简化基于Spring框架的应用程序的开发过程。在这篇文章中,我们将深入探讨SpringBoot应用程序的启动流程,了解其背后的机制。 Spring Boot 启动概览 SpringBoot应用程序的启动通常从一个包含 m…...
铭豹扩展坞 USB转网口 突然无法识别解决方法
当 USB 转网口扩展坞在一台笔记本上无法识别,但在其他电脑上正常工作时,问题通常出在笔记本自身或其与扩展坞的兼容性上。以下是系统化的定位思路和排查步骤,帮助你快速找到故障原因: 背景: 一个M-pard(铭豹)扩展坞的网卡突然无法识别了,扩展出来的三个USB接口正常。…...
Zustand 状态管理库:极简而强大的解决方案
Zustand 是一个轻量级、快速和可扩展的状态管理库,特别适合 React 应用。它以简洁的 API 和高效的性能解决了 Redux 等状态管理方案中的繁琐问题。 核心优势对比 基本使用指南 1. 创建 Store // store.js import create from zustandconst useStore create((set)…...
Swift 协议扩展精进之路:解决 CoreData 托管实体子类的类型不匹配问题(下)
概述 在 Swift 开发语言中,各位秃头小码农们可以充分利用语法本身所带来的便利去劈荆斩棘。我们还可以恣意利用泛型、协议关联类型和协议扩展来进一步简化和优化我们复杂的代码需求。 不过,在涉及到多个子类派生于基类进行多态模拟的场景下,…...
【网络安全产品大调研系列】2. 体验漏洞扫描
前言 2023 年漏洞扫描服务市场规模预计为 3.06(十亿美元)。漏洞扫描服务市场行业预计将从 2024 年的 3.48(十亿美元)增长到 2032 年的 9.54(十亿美元)。预测期内漏洞扫描服务市场 CAGR(增长率&…...
基于Uniapp开发HarmonyOS 5.0旅游应用技术实践
一、技术选型背景 1.跨平台优势 Uniapp采用Vue.js框架,支持"一次开发,多端部署",可同步生成HarmonyOS、iOS、Android等多平台应用。 2.鸿蒙特性融合 HarmonyOS 5.0的分布式能力与原子化服务,为旅游应用带来…...
【C++从零实现Json-Rpc框架】第六弹 —— 服务端模块划分
一、项目背景回顾 前五弹完成了Json-Rpc协议解析、请求处理、客户端调用等基础模块搭建。 本弹重点聚焦于服务端的模块划分与架构设计,提升代码结构的可维护性与扩展性。 二、服务端模块设计目标 高内聚低耦合:各模块职责清晰,便于独立开发…...
学习STC51单片机32(芯片为STC89C52RCRC)OLED显示屏2
每日一言 今天的每一份坚持,都是在为未来积攒底气。 案例:OLED显示一个A 这边观察到一个点,怎么雪花了就是都是乱七八糟的占满了屏幕。。 解释 : 如果代码里信号切换太快(比如 SDA 刚变,SCL 立刻变&#…...
浪潮交换机配置track检测实现高速公路收费网络主备切换NQA
浪潮交换机track配置 项目背景高速网络拓扑网络情况分析通信线路收费网络路由 收费汇聚交换机相应配置收费汇聚track配置 项目背景 在实施省内一条高速公路时遇到的需求,本次涉及的主要是收费汇聚交换机的配置,浪潮网络设备在高速项目很少,通…...
MFC 抛体运动模拟:常见问题解决与界面美化
在 MFC 中开发抛体运动模拟程序时,我们常遇到 轨迹残留、无效刷新、视觉单调、物理逻辑瑕疵 等问题。本文将针对这些痛点,详细解析原因并提供解决方案,同时兼顾界面美化,让模拟效果更专业、更高效。 问题一:历史轨迹与小球残影残留 现象 小球运动后,历史位置的 “残影”…...
Windows安装Miniconda
一、下载 https://www.anaconda.com/download/success 二、安装 三、配置镜像源 Anaconda/Miniconda pip 配置清华镜像源_anaconda配置清华源-CSDN博客 四、常用操作命令 Anaconda/Miniconda 基本操作命令_miniconda创建环境命令-CSDN博客...
