利用圆上两点和圆半径求解圆心坐标
已知圆上两点P1,P2,坐标依次为 ( x 1 , y 1 ) , ( x 2 , y 2 ) (x_1,y_1),(x_2,y_2) (x1,y1),(x2,y2),圆的半径为 r r r,求圆心的坐标。

假定P1,P2为任意两点,则两点连成线段的中点坐标是
x m i d = ( x 1 + x 2 ) / 2 x_{mid} = (x_1+x_2)/2 xmid=(x1+x2)/2
y m i d = ( y 1 + y 2 ) / 2 y_{mid} = (y_1+y_2)/2 ymid=(y1+y2)/2
P1,P2连线的斜率是
k = ( y 1 − y 2 ) / ( x 1 − x 2 ) k = (y_1-y_2)/(x_1-x_2) k=(y1−y2)/(x1−x2)
P1,P2连线的垂线斜率为
m = − 1 / k m = -1/k m=−1/k
则,圆心所在的直线方程是
y − y m i d = m ∗ ( x − x m i d ) y-y_{mid} = m * (x - x_{mid}) y−ymid=m∗(x−xmid)
圆心 ( x 0 , y 0 ) (x_0,y_0) (x0,y0)同时满足
( x 0 − x 1 ) 2 + ( y 0 − y 1 ) 2 = r 2 (x_0-x_1)^2+(y_0-y_1)^2=r^2 (x0−x1)2+(y0−y1)2=r2和 y 0 − y m i d = m ∗ ( x 0 − x m i d ) y_0-y_{mid} = m * (x_0 - x_{mid}) y0−ymid=m∗(x0−xmid)
或
( x 0 − x 2 ) 2 + ( y 0 − y 2 ) 2 = r 2 (x_0-x_2)^2+(y_0-y_2)^2=r^2 (x0−x2)2+(y0−y2)2=r2和 y 0 − y m i d = m ∗ ( x 0 − x m i d ) y_0-y_{mid} = m * (x_0 - x_{mid}) y0−ymid=m∗(x0−xmid)
将直线方程
y 0 = m ∗ ( x 0 − x m i d ) − y m i d y_0 = m*(x_0 -x_{mid})-y_{mid} y0=m∗(x0−xmid)−ymid
代入圆的公式,
得到
( x 0 − x 1 ) 2 + [ m ∗ ( x 0 − x m i d ) + y m i d − y 1 ] 2 = r 2 (x_0-x_1)^2+[m * (x_0-x_{mid})+y_{mid}-y_1]^2=r^2 (x0−x1)2+[m∗(x0−xmid)+ymid−y1]2=r2
展开,
x 0 2 − 2 x 0 x 1 + x 2 2 + m 2 x 0 2 + 2 m x 0 ∗ ( y m i d − m ∗ x m i d − y 1 ) + ( y m i d − m ∗ x m i d − y 1 ) 2 = r 2 x_0^2-2x_0x_1+x_2^2+m^2x_0^2+2mx_0*(y_{mid}-m*x_{mid}-y_1)+(y_{mid}-m*x_{mid}-y_1)^2=r^2 x02−2x0x1+x22+m2x02+2mx0∗(ymid−m∗xmid−y1)+(ymid−m∗xmid−y1)2=r2
整理,
( 1 + m 2 ) x 0 2 + [ 2 m ( y m i d − m ∗ x m i d − y 1 ) − 2 x 1 ] ∗ x 0 + ( y m i d − m ∗ x m i d − y 1 ) 2 + x 1 2 − r 2 = 0 (1+m^2)x_0^2+[2m(y_{mid}-m*x_{mid}-y_1)-2x_1]*x_0+(y_{mid}-m*x_{mid}-y_1)^2+x_1^2-r^2 = 0 (1+m2)x02+[2m(ymid−m∗xmid−y1)−2x1]∗x0+(ymid−m∗xmid−y1)2+x12−r2=0
令,
A = 1 + m 2 A= 1+m^2 A=1+m2
B = 2 m ( y m i d − m ∗ x m i d − y 1 ) − 2 x 1 B= 2m(y_{mid}-m*x_{mid}-y_1)-2x_1 B=2m(ymid−m∗xmid−y1)−2x1
C = ( y m i d − m ∗ x m i d − y 1 ) 2 + x 1 2 − r 2 C= (y_{mid}-m*x_{mid}-y_1)^2+x_1^2-r^2 C=(ymid−m∗xmid−y1)2+x12−r2
则,
x 0 = − B ± B 2 − 4 A C 2 A x_0=\frac{-B± \sqrt{B^2-4AC}}{2A} x0=2A−B±B2−4AC
y 0 = m ∗ ( x 0 − x m i d ) + y m i d y_0= m*(x_0-x_{mid})+y_{mid} y0=m∗(x0−xmid)+ymid
x_1 = 2
y_1 = 4
x_2 = 4
y_2 = 2
r = 2
if (x_1 - x_2 == 0):print('横坐标相同,求解可能出错')exit()
else:x_mid = (x_1 + x_2) / 2y_mid = (y_1 + y_2) / 2k = (y_1-y_2)/(x_1-x_2)m = -1/kA = 1 + m**2B = 2 * m *(y_mid - m * x_mid - y_1)- 2 * x_1C = (y_mid - m * x_mid - y_1)**2 + x_1**2 - r**2print(A, B, C)x_c1 = (-B + ((B**2-4*A*C)**0.5))/(2*A)x_c2 = (-B - ((B**2-4*A*C)**0.5))/(2*A)y_c1 = m * (x_c1 - x_mid) + y_midy_c2 = m * (x_c2 - x_mid) + y_midprint('圆心坐标:',(x_c1,y_c1))print('圆心坐标:',(x_c2,y_c2))
运行结果:

InsCode
相关文章:
利用圆上两点和圆半径求解圆心坐标
已知圆上两点P1,P2,坐标依次为 ( x 1 , y 1 ) , ( x 2 , y 2 ) (x_1,y_1),(x_2,y_2) (x1,y1),(x2,y2),圆的半径为 r r r,求圆心的坐标。 假定P1,P2为任意两点,则两点连成线段的中点坐标是 x m i …...
从ChatGPT代码执行逃逸到LLMs应用安全思考
摘要 11月7日OpenAI发布会后,GPT-4的最新更新为用户带来了更加便捷的功能,包括Python代码解释器、网络内容浏览和图像生成能力。这些创新不仅开辟了人工智能应用的新境界,也展示了GPT-4在处理复杂任务方面的惊人能力。然而,与所有…...
Python入门-基础知识-变量
1.标识符与关键字 Python语言规定,标识符由字母、数字和下画线组成,且不允许以数字开头。合法的标识符可以 是student_1、 addNumber、num等,而3number、2_student等是不合法的标识符。在使用标识符时应注意以下几点。 (1)命名时应遵循见名知…...
设计模式原则——接口隔离原则
设计模式原则 设计模式示例代码库地址: https://gitee.com/Jasonpupil/designPatterns 接口隔离原则 要求程序员尽量将臃肿庞大的接口拆分为更小的和更具体的接口,让接口中只包含客户感兴趣的方法接口隔离原则的目标是降低类或模块之间的耦合度&…...
MySQL数据库——在Centos7环境安装
MySQL在Centos7环境安装 1.切换root用户 安装与卸载中,用户全部切换成为root,安装好后,普通用户也能使用 2.卸载不要的环境 要将自己环境中有关mysql的全都删除,避免安装过程中被影响 ps axj | grep mariadb 先检查是否有mari…...
怎样规避液氮容器内部结霜的问题
液氮容器内部结霜问题一直是我们在使用液氮储存罐时遇到的一个棘手难题。液氮的极低温度使得容器内部很容易产生结霜现象,这不仅影响了容器的正常使用,还可能对内部样品或设备造成损坏。因此,如何有效规避液氮容器内部结霜问题成为了每个使用…...
冶金工业5G智能工厂工业物联数字孪生平台,推进制造业数字化转型
冶金工业5G智能工厂工业物联数字孪生平台,推进制造业数字化转型。传统生产方式难以满足现代冶金工业的发展需求,数字化转型成为必然趋势。通过引入5G、工业物联网和数字孪生等先进技术,冶金工业可以实现生产过程智能化、高效化和绿色化&#…...
一文入门机器学习参数调整实操
作者前言: 通过向身边的同事大佬请教之后,大佬指点我把本文的宗旨从“参数调优”改成了“参数调整”。实在惭愧,暂时还没到能“调优”的水平,本文只能通过实操演示“哪些操作会对数据训练产生影响”,后续加深学习之后,…...
基于51单片机的银行排队呼叫系统设计
一.硬件方案 本系统是以排队抽号顺序为核心,客户利用客户端抽号,工作人员利用叫号端叫号;通过显示器及时显示当前所叫号数,客户及时了解排队信息,通过合理的程序结构来执行排队抽号。电路主要由51单片机最小系统LCD12…...
JXCategoryView的使用总结
一、初始化 -(JXCategoryTitleView *)categoryView{if (!_categoryView) {_categoryView [[JXCategoryTitleView alloc] init];_categoryView.delegate self;_categoryView.titleDataSource self;_categoryView.averageCellSpacingEnabled NO; //是否平均分配项目之间的间…...
Centos9 安装VBox增强功能问题
安装步骤 更新gcc 首先手动更新gcc,防止无法兼容最新版本的内核,我这里将gcc 11更新到gcc 13 1.首先更新当前gcc和支持 yum install -y gcc gcc-c 2.下载新版本gcc压缩包 wget http://ftp.gnu.org/gnu/gcc/gcc-13.1.0/gcc-13.1.0.tar.gz 解压到usr ta…...
【JVM】Java虚拟机运行时数据分区介绍
JVM 分区(运行时数据区域) 文章目录 JVM 分区(运行时数据区域)前言1. 程序计数器2. Java 虚拟机栈3. 本地方法栈4. Java 堆5. 方法区6. 运行时常量池7. 直接内存 前言 之前在说多线程的时候,提到了JVM虚拟机的分区内存…...
大数据面试题之Kafka(2)
目录 Kafka的工作原理? Kafka怎么保证数据不丢失,不重复? Kafka分区策略 Kafka如何尽可能保证数据可靠性? Kafka数据丢失怎么处理? Kafka如何保证全局有序? 生产者消费者模式与发布订阅模式有何异同? Kafka的消费者组是如何消费数据的 Kafka的…...
前端面试题(基础篇十一)
一、DOCTYPE 的作用是什么? <!DOCTYPE> 声明一般位于文档的第一行,它的作用主要是告诉浏览器以什么样的模式来解析文档。一般指定了之后会以标准模式来进行文档解析,否则就以兼容模式进行解析。在标准模式下,浏览器的解析规…...
【论文阅读】Answering Label-Constrained Reachability Queries via Reduction Techniques
Cai Y, Zheng W. Answering Label-Constrained Reachability Queries via Reduction Techniques[C]//International Conference on Database Systems for Advanced Applications. Cham: Springer Nature Switzerland, 2023: 114-131. Abstract 许多真实世界的图都包含边缘标签…...
Git Flow 工作流学习要点
Git Flow 工作流学习要点 Git Flow — 流程图Git Flow — 操作指令优点:缺点:Git Flow 分支类型Git Flow 工作流程简述关于 feature 分支关于 Release 分支关于 hotfix 分支 总结 Git Flow — 流程图 图片来源:https://nvie.com/posts/a-succ…...
blender 快捷键 常见问题
一、快捷键 平移视图:Shift 鼠标中键旋转视图:鼠标中键缩放视图:鼠标滚动框选放大模型:Shift B线框预览和材质预览切换:Shift Z 二、常见问题 问题:导入模型成功,但是场景中看不到。 解…...
HTTP详解:TCP三次握手和四次挥手
一、TCP协议概述 TCP协议是互联网协议栈中传输层的核心协议之一,它提供了一种可靠的数据传输方式,确保数据包按顺序到达,并且没有丢失或重复。TCP的主要特点包括: 面向连接:TCP在传输数据之前需要建立连接。可靠传输&…...
详解HTTP:有了HTTP,为何需要WebSocket?
在日常生活中,HTTP 常用于请求数据。例如,当你打开一个天气预报网站时,浏览器会发送一个 HTTP 请求到服务器,请求当前的天气数据,服务器返回响应,浏览器解析并显示这些数据。 但是,当涉及到需要…...
Spring Boot 启动流程是怎么样的
引言 SpringBoot是一个广泛使用的Java框架,旨在简化基于Spring框架的应用程序的开发过程。在这篇文章中,我们将深入探讨SpringBoot应用程序的启动流程,了解其背后的机制。 Spring Boot 启动概览 SpringBoot应用程序的启动通常从一个包含 m…...
深入浅出Asp.Net Core MVC应用开发系列-AspNetCore中的日志记录
ASP.NET Core 是一个跨平台的开源框架,用于在 Windows、macOS 或 Linux 上生成基于云的新式 Web 应用。 ASP.NET Core 中的日志记录 .NET 通过 ILogger API 支持高性能结构化日志记录,以帮助监视应用程序行为和诊断问题。 可以通过配置不同的记录提供程…...
使用VSCode开发Django指南
使用VSCode开发Django指南 一、概述 Django 是一个高级 Python 框架,专为快速、安全和可扩展的 Web 开发而设计。Django 包含对 URL 路由、页面模板和数据处理的丰富支持。 本文将创建一个简单的 Django 应用,其中包含三个使用通用基本模板的页面。在此…...
模型参数、模型存储精度、参数与显存
模型参数量衡量单位 M:百万(Million) B:十亿(Billion) 1 B 1000 M 1B 1000M 1B1000M 参数存储精度 模型参数是固定的,但是一个参数所表示多少字节不一定,需要看这个参数以什么…...
Mybatis逆向工程,动态创建实体类、条件扩展类、Mapper接口、Mapper.xml映射文件
今天呢,博主的学习进度也是步入了Java Mybatis 框架,目前正在逐步杨帆旗航。 那么接下来就给大家出一期有关 Mybatis 逆向工程的教学,希望能对大家有所帮助,也特别欢迎大家指点不足之处,小生很乐意接受正确的建议&…...
五年级数学知识边界总结思考-下册
目录 一、背景二、过程1.观察物体小学五年级下册“观察物体”知识点详解:由来、作用与意义**一、知识点核心内容****二、知识点的由来:从生活实践到数学抽象****三、知识的作用:解决实际问题的工具****四、学习的意义:培养核心素养…...
将对透视变换后的图像使用Otsu进行阈值化,来分离黑色和白色像素。这句话中的Otsu是什么意思?
Otsu 是一种自动阈值化方法,用于将图像分割为前景和背景。它通过最小化图像的类内方差或等价地最大化类间方差来选择最佳阈值。这种方法特别适用于图像的二值化处理,能够自动确定一个阈值,将图像中的像素分为黑色和白色两类。 Otsu 方法的原…...
令牌桶 滑动窗口->限流 分布式信号量->限并发的原理 lua脚本分析介绍
文章目录 前言限流限制并发的实际理解限流令牌桶代码实现结果分析令牌桶lua的模拟实现原理总结: 滑动窗口代码实现结果分析lua脚本原理解析 限并发分布式信号量代码实现结果分析lua脚本实现原理 双注解去实现限流 并发结果分析: 实际业务去理解体会统一注…...
HTML前端开发:JavaScript 常用事件详解
作为前端开发的核心,JavaScript 事件是用户与网页交互的基础。以下是常见事件的详细说明和用法示例: 1. onclick - 点击事件 当元素被单击时触发(左键点击) button.onclick function() {alert("按钮被点击了!&…...
稳定币的深度剖析与展望
一、引言 在当今数字化浪潮席卷全球的时代,加密货币作为一种新兴的金融现象,正以前所未有的速度改变着我们对传统货币和金融体系的认知。然而,加密货币市场的高度波动性却成为了其广泛应用和普及的一大障碍。在这样的背景下,稳定…...
html-<abbr> 缩写或首字母缩略词
定义与作用 <abbr> 标签用于表示缩写或首字母缩略词,它可以帮助用户更好地理解缩写的含义,尤其是对于那些不熟悉该缩写的用户。 title 属性的内容提供了缩写的详细说明。当用户将鼠标悬停在缩写上时,会显示一个提示框。 示例&#x…...
