利用圆上两点和圆半径求解圆心坐标
已知圆上两点P1,P2,坐标依次为 ( x 1 , y 1 ) , ( x 2 , y 2 ) (x_1,y_1),(x_2,y_2) (x1,y1),(x2,y2),圆的半径为 r r r,求圆心的坐标。
假定P1,P2为任意两点,则两点连成线段的中点坐标是
x m i d = ( x 1 + x 2 ) / 2 x_{mid} = (x_1+x_2)/2 xmid=(x1+x2)/2
y m i d = ( y 1 + y 2 ) / 2 y_{mid} = (y_1+y_2)/2 ymid=(y1+y2)/2
P1,P2连线的斜率是
k = ( y 1 − y 2 ) / ( x 1 − x 2 ) k = (y_1-y_2)/(x_1-x_2) k=(y1−y2)/(x1−x2)
P1,P2连线的垂线斜率为
m = − 1 / k m = -1/k m=−1/k
则,圆心所在的直线方程是
y − y m i d = m ∗ ( x − x m i d ) y-y_{mid} = m * (x - x_{mid}) y−ymid=m∗(x−xmid)
圆心 ( x 0 , y 0 ) (x_0,y_0) (x0,y0)同时满足
( x 0 − x 1 ) 2 + ( y 0 − y 1 ) 2 = r 2 (x_0-x_1)^2+(y_0-y_1)^2=r^2 (x0−x1)2+(y0−y1)2=r2和 y 0 − y m i d = m ∗ ( x 0 − x m i d ) y_0-y_{mid} = m * (x_0 - x_{mid}) y0−ymid=m∗(x0−xmid)
或
( x 0 − x 2 ) 2 + ( y 0 − y 2 ) 2 = r 2 (x_0-x_2)^2+(y_0-y_2)^2=r^2 (x0−x2)2+(y0−y2)2=r2和 y 0 − y m i d = m ∗ ( x 0 − x m i d ) y_0-y_{mid} = m * (x_0 - x_{mid}) y0−ymid=m∗(x0−xmid)
将直线方程
y 0 = m ∗ ( x 0 − x m i d ) − y m i d y_0 = m*(x_0 -x_{mid})-y_{mid} y0=m∗(x0−xmid)−ymid
代入圆的公式,
得到
( x 0 − x 1 ) 2 + [ m ∗ ( x 0 − x m i d ) + y m i d − y 1 ] 2 = r 2 (x_0-x_1)^2+[m * (x_0-x_{mid})+y_{mid}-y_1]^2=r^2 (x0−x1)2+[m∗(x0−xmid)+ymid−y1]2=r2
展开,
x 0 2 − 2 x 0 x 1 + x 2 2 + m 2 x 0 2 + 2 m x 0 ∗ ( y m i d − m ∗ x m i d − y 1 ) + ( y m i d − m ∗ x m i d − y 1 ) 2 = r 2 x_0^2-2x_0x_1+x_2^2+m^2x_0^2+2mx_0*(y_{mid}-m*x_{mid}-y_1)+(y_{mid}-m*x_{mid}-y_1)^2=r^2 x02−2x0x1+x22+m2x02+2mx0∗(ymid−m∗xmid−y1)+(ymid−m∗xmid−y1)2=r2
整理,
( 1 + m 2 ) x 0 2 + [ 2 m ( y m i d − m ∗ x m i d − y 1 ) − 2 x 1 ] ∗ x 0 + ( y m i d − m ∗ x m i d − y 1 ) 2 + x 1 2 − r 2 = 0 (1+m^2)x_0^2+[2m(y_{mid}-m*x_{mid}-y_1)-2x_1]*x_0+(y_{mid}-m*x_{mid}-y_1)^2+x_1^2-r^2 = 0 (1+m2)x02+[2m(ymid−m∗xmid−y1)−2x1]∗x0+(ymid−m∗xmid−y1)2+x12−r2=0
令,
A = 1 + m 2 A= 1+m^2 A=1+m2
B = 2 m ( y m i d − m ∗ x m i d − y 1 ) − 2 x 1 B= 2m(y_{mid}-m*x_{mid}-y_1)-2x_1 B=2m(ymid−m∗xmid−y1)−2x1
C = ( y m i d − m ∗ x m i d − y 1 ) 2 + x 1 2 − r 2 C= (y_{mid}-m*x_{mid}-y_1)^2+x_1^2-r^2 C=(ymid−m∗xmid−y1)2+x12−r2
则,
x 0 = − B ± B 2 − 4 A C 2 A x_0=\frac{-B± \sqrt{B^2-4AC}}{2A} x0=2A−B±B2−4AC
y 0 = m ∗ ( x 0 − x m i d ) + y m i d y_0= m*(x_0-x_{mid})+y_{mid} y0=m∗(x0−xmid)+ymid
x_1 = 2
y_1 = 4
x_2 = 4
y_2 = 2
r = 2
if (x_1 - x_2 == 0):print('横坐标相同,求解可能出错')exit()
else:x_mid = (x_1 + x_2) / 2y_mid = (y_1 + y_2) / 2k = (y_1-y_2)/(x_1-x_2)m = -1/kA = 1 + m**2B = 2 * m *(y_mid - m * x_mid - y_1)- 2 * x_1C = (y_mid - m * x_mid - y_1)**2 + x_1**2 - r**2print(A, B, C)x_c1 = (-B + ((B**2-4*A*C)**0.5))/(2*A)x_c2 = (-B - ((B**2-4*A*C)**0.5))/(2*A)y_c1 = m * (x_c1 - x_mid) + y_midy_c2 = m * (x_c2 - x_mid) + y_midprint('圆心坐标:',(x_c1,y_c1))print('圆心坐标:',(x_c2,y_c2))
运行结果:
InsCode
相关文章:
利用圆上两点和圆半径求解圆心坐标
已知圆上两点P1,P2,坐标依次为 ( x 1 , y 1 ) , ( x 2 , y 2 ) (x_1,y_1),(x_2,y_2) (x1,y1),(x2,y2),圆的半径为 r r r,求圆心的坐标。 假定P1,P2为任意两点,则两点连成线段的中点坐标是 x m i …...
从ChatGPT代码执行逃逸到LLMs应用安全思考
摘要 11月7日OpenAI发布会后,GPT-4的最新更新为用户带来了更加便捷的功能,包括Python代码解释器、网络内容浏览和图像生成能力。这些创新不仅开辟了人工智能应用的新境界,也展示了GPT-4在处理复杂任务方面的惊人能力。然而,与所有…...
Python入门-基础知识-变量
1.标识符与关键字 Python语言规定,标识符由字母、数字和下画线组成,且不允许以数字开头。合法的标识符可以 是student_1、 addNumber、num等,而3number、2_student等是不合法的标识符。在使用标识符时应注意以下几点。 (1)命名时应遵循见名知…...
设计模式原则——接口隔离原则
设计模式原则 设计模式示例代码库地址: https://gitee.com/Jasonpupil/designPatterns 接口隔离原则 要求程序员尽量将臃肿庞大的接口拆分为更小的和更具体的接口,让接口中只包含客户感兴趣的方法接口隔离原则的目标是降低类或模块之间的耦合度&…...
MySQL数据库——在Centos7环境安装
MySQL在Centos7环境安装 1.切换root用户 安装与卸载中,用户全部切换成为root,安装好后,普通用户也能使用 2.卸载不要的环境 要将自己环境中有关mysql的全都删除,避免安装过程中被影响 ps axj | grep mariadb 先检查是否有mari…...
怎样规避液氮容器内部结霜的问题
液氮容器内部结霜问题一直是我们在使用液氮储存罐时遇到的一个棘手难题。液氮的极低温度使得容器内部很容易产生结霜现象,这不仅影响了容器的正常使用,还可能对内部样品或设备造成损坏。因此,如何有效规避液氮容器内部结霜问题成为了每个使用…...
冶金工业5G智能工厂工业物联数字孪生平台,推进制造业数字化转型
冶金工业5G智能工厂工业物联数字孪生平台,推进制造业数字化转型。传统生产方式难以满足现代冶金工业的发展需求,数字化转型成为必然趋势。通过引入5G、工业物联网和数字孪生等先进技术,冶金工业可以实现生产过程智能化、高效化和绿色化&#…...
一文入门机器学习参数调整实操
作者前言: 通过向身边的同事大佬请教之后,大佬指点我把本文的宗旨从“参数调优”改成了“参数调整”。实在惭愧,暂时还没到能“调优”的水平,本文只能通过实操演示“哪些操作会对数据训练产生影响”,后续加深学习之后,…...
基于51单片机的银行排队呼叫系统设计
一.硬件方案 本系统是以排队抽号顺序为核心,客户利用客户端抽号,工作人员利用叫号端叫号;通过显示器及时显示当前所叫号数,客户及时了解排队信息,通过合理的程序结构来执行排队抽号。电路主要由51单片机最小系统LCD12…...
JXCategoryView的使用总结
一、初始化 -(JXCategoryTitleView *)categoryView{if (!_categoryView) {_categoryView [[JXCategoryTitleView alloc] init];_categoryView.delegate self;_categoryView.titleDataSource self;_categoryView.averageCellSpacingEnabled NO; //是否平均分配项目之间的间…...
Centos9 安装VBox增强功能问题
安装步骤 更新gcc 首先手动更新gcc,防止无法兼容最新版本的内核,我这里将gcc 11更新到gcc 13 1.首先更新当前gcc和支持 yum install -y gcc gcc-c 2.下载新版本gcc压缩包 wget http://ftp.gnu.org/gnu/gcc/gcc-13.1.0/gcc-13.1.0.tar.gz 解压到usr ta…...
【JVM】Java虚拟机运行时数据分区介绍
JVM 分区(运行时数据区域) 文章目录 JVM 分区(运行时数据区域)前言1. 程序计数器2. Java 虚拟机栈3. 本地方法栈4. Java 堆5. 方法区6. 运行时常量池7. 直接内存 前言 之前在说多线程的时候,提到了JVM虚拟机的分区内存…...
大数据面试题之Kafka(2)
目录 Kafka的工作原理? Kafka怎么保证数据不丢失,不重复? Kafka分区策略 Kafka如何尽可能保证数据可靠性? Kafka数据丢失怎么处理? Kafka如何保证全局有序? 生产者消费者模式与发布订阅模式有何异同? Kafka的消费者组是如何消费数据的 Kafka的…...
前端面试题(基础篇十一)
一、DOCTYPE 的作用是什么? <!DOCTYPE> 声明一般位于文档的第一行,它的作用主要是告诉浏览器以什么样的模式来解析文档。一般指定了之后会以标准模式来进行文档解析,否则就以兼容模式进行解析。在标准模式下,浏览器的解析规…...
【论文阅读】Answering Label-Constrained Reachability Queries via Reduction Techniques
Cai Y, Zheng W. Answering Label-Constrained Reachability Queries via Reduction Techniques[C]//International Conference on Database Systems for Advanced Applications. Cham: Springer Nature Switzerland, 2023: 114-131. Abstract 许多真实世界的图都包含边缘标签…...
Git Flow 工作流学习要点
Git Flow 工作流学习要点 Git Flow — 流程图Git Flow — 操作指令优点:缺点:Git Flow 分支类型Git Flow 工作流程简述关于 feature 分支关于 Release 分支关于 hotfix 分支 总结 Git Flow — 流程图 图片来源:https://nvie.com/posts/a-succ…...
blender 快捷键 常见问题
一、快捷键 平移视图:Shift 鼠标中键旋转视图:鼠标中键缩放视图:鼠标滚动框选放大模型:Shift B线框预览和材质预览切换:Shift Z 二、常见问题 问题:导入模型成功,但是场景中看不到。 解…...
HTTP详解:TCP三次握手和四次挥手
一、TCP协议概述 TCP协议是互联网协议栈中传输层的核心协议之一,它提供了一种可靠的数据传输方式,确保数据包按顺序到达,并且没有丢失或重复。TCP的主要特点包括: 面向连接:TCP在传输数据之前需要建立连接。可靠传输&…...
详解HTTP:有了HTTP,为何需要WebSocket?
在日常生活中,HTTP 常用于请求数据。例如,当你打开一个天气预报网站时,浏览器会发送一个 HTTP 请求到服务器,请求当前的天气数据,服务器返回响应,浏览器解析并显示这些数据。 但是,当涉及到需要…...
Spring Boot 启动流程是怎么样的
引言 SpringBoot是一个广泛使用的Java框架,旨在简化基于Spring框架的应用程序的开发过程。在这篇文章中,我们将深入探讨SpringBoot应用程序的启动流程,了解其背后的机制。 Spring Boot 启动概览 SpringBoot应用程序的启动通常从一个包含 m…...
【学习笔记】数据结构(三)
栈和队列 文章目录 栈和队列3.1 栈 - Stack3.1.1 抽象数据类型栈的定义3.1.2 栈的表示和实现 3.2 栈的应用举例3.2.1 数制转换3.2.2 括号匹配的检验3.2.3 迷宫求解3.2.4 表达式求值 - 波兰、逆波兰3.2.5 反转一个字符串或者反转一个链表 3.3 栈与递归的实现3.4 队列 - Queue3.4…...
学习python笔记:10,requests,enumerate,numpy.array
requests库,用于发送 HTTP 请求的 Python 库。 requests 是一个用于发送 HTTP 请求的 Python 库。它使得发送 HTTP 请求变得简单且人性化。以下是一些基本的 requests 函数及其用途: requests.get(url, **kwargs) 发送一个 GET 请求到指定的 URL。 i…...
经典神经网络(13)GPT-1、GPT-2原理及nanoGPT源码分析(GPT-2)
经典神经网络(13)GPT-1、GPT-2原理及nanoGPT源码分析(GPT-2) 2022 年 11 月,ChatGPT 成功面世,成为历史上用户增长最快的消费者应用。与 Google、FaceBook等公司不同,OpenAI 从初代模型 GPT-1 开始,始终贯彻只有解码器࿰…...
MySQL库与表的操作
目录 一、登录并进入数据库 1、登录 2、USE 命令 检查当前数据库 二、库的操作 1、创建数据库语法 2、举例演示 3、退出 三、字符集和校对规则 1、字符集(Character Set) 2、校对集(Collation) 总结 3、操作命令 …...
TTS 语音合成技术学习
TTS 语音合成技术 TTS(Text-to-Speech,文字转语音)技术是一种能够将文字内容转换为自然语音的技术。通过 TTS,机器可以“说话”,这大大增强了人与机器之间的互动能力。无论是在语音助手、导航系统还是电子书朗读器中&…...
小公司做自动化的困境
1. 人员数量不够 非常常见的场景, 开发没几个, 凭什么测试要那么多, 假设这里面有3个测试, 是不是得有1个人会搞框架? 是不是得有2人搞功能测试, 一个人又搞框架, 有些脚本, 真来得及吗? 2. 人员基础不够 现在有的大公司, 是这样子协作的, 也就是某模块需求谁谁测试的, 那么…...
基于pytorch框架的手写数字识别(保姆级教学)
1、前言 本文基于PyTorch框架,采用CNN卷积神经网络实现MNIST手写数字识别,不仅可以在GPU上,同时也可以在CPU上运行。方便即使只有CPU的小伙伴也可以运行该模型。本博客手把手教学,如何手写网络层(3层),以及模型训练,详细介绍各参数含义与用途。 2、模型源码解读 该模型…...
注意力机制在大语言模型中的应用
在大语言模型中,注意力机制(Attention Mechanism)用于捕获输入序列中不同标记(token)之间的关系和依赖性。这种机制可以动态地调整每个标记对当前处理任务的重要性,从而提高模型的性能。具体来说࿰…...
qt 实现对字体高亮处理原理
在Qt中实现对文本的字体高亮处理,通常涉及到使用QTextDocument、QTextCharFormat和QSyntaxHighlighter。下面是一个简单的例子,演示如何为一个文本编辑器(假设是QTextEdit)添加简单的关键词高亮功能: 步骤 1: 定义关键…...
SAP中通过财务科目确定分析功能来定位解决BILLING问题实例
接用户反馈,一笔销售订单做发货后做销售发票时,没有成功过账到财务,提示财户确定错误。 这个之前可以通过VF02中点击小绿旗来重新执行过财动作,看看有没有相应日志来定位问题。本次尝试用此方法,也没有找到相关线索。 …...
哪种语言的网站 做seo更好/百度百科入口
指针的偏移值是多少取决于指针的类型: int a 10; char c A;int *p; char *p2;p &a; p2 &c;//p (自身运算)之后再加1 printf("a的地址的打印:%p\n",p); //p (自身加1运算)之后再下一步 …...
手机网站建设维护协议/不用流量的地图导航软件
在线课堂:https://www.100ask.net/index(课程观看) 论 坛:http://bbs.100ask.net/(学术答疑) 开 发 板:https://100ask.taobao.com/ (淘宝) https://weid…...
做网站一定要公司备案吗/北京做网站推广
epoll学习:思考一种高性能的服务器处理框架 终于开始学习epoll了,虽然不明白的地方还是很多,但从理论到实践,相信自己动手去写一个具体的框架后,一切会清晰很多。 1、首先需要一个内存池,目的在于ÿ…...
徐州做网站费用/北京百度推广代理公司
2019独角兽企业重金招聘Python工程师标准>>> Jenkins是代码持续集成工具,Sonar则是一个代码质量管理平台。在编译代码时,可以使用SonarQube提供的sonar-maven-plugin插件执行执行sonar代码质量检查,将检查结果传给SonarQube服务器…...
WordPress多域名登录/搜索引擎优化排名技巧
Monica◆ ◆ ◆ 神经质外加控制欲的莫妮卡 莫妮卡是《六人行》的中心人物,其他五人可以说就是由她延伸出来的。 [个性]像是妈妈般的照顾大家,爱管闲事,让她成为大家的支柱。在市区最炫餐厅担任厨师,不论工作和生活上,凡…...
做旅游销售网站平台ppt/整合营销活动策划方案
如果营收阶段证明的是商业模式,那么规模化阶段证明的就是市场的大小。 中间的空洞 公司可重点关注某利基市场(市场细分策略),也可以追求更高的效率(低成本策略),或是试图变得与众不同…...