当前位置: 首页 > news >正文

单例模式---线程安全实现

文章目录

  • 1.单例模式的特点😊
  • 2.单例模式两种实现🤣🤗😊
    • 2.1 饿汉式
    • 2.2 懒汉式
  • 3.传统单例模式的线程安全问题
  • 4.解决方法
    • 4.1静态局部变量
    • 4.2加锁
    • 4.3双重检查锁(DCL)
    • 4.4pthread_once

1.单例模式的特点😊

1.全局只有一个类的static实例存在;
2.不允许直接实例化,构造函数为私有的,只通过一个类的静态方法获取该实例;

2.单例模式两种实现🤣🤗😊

2.1 饿汉式

  饿汉式是在类加载的时候就会创造实例,会造成资源的浪费。 具体:内部先定义并初始化好了一个静态实例。获取方法中直接返回实例。
特点:线程安全,会造成资源浪费

实现:

class Singleton {
private:static Singleton instance;// 私有构造函数,防止类外实例化对象Singleton() {}public:// 获取实例的静态方法static Singleton& getInstance() {return instance;}// 其他成员函数void doSomething() {// do something}
};// 静态成员变量需要在类外初始化
Singleton Singleton::instance;int main() {// 获取单例对象实例Singleton& singleton = Singleton::getInstance();// 调用单例对象的方法singleton.doSomething();return 0;
}

2.2 懒汉式

懒汉式是在需要时才创建实例,通过获取实例方法获取实例。
具体:内部定义一个静态实例,获取方法中判断实例是否为空,空则初始化实例;否则返回该实例
特点:避免资源浪费,造成线程安全问题。
实现

class Singleton {
private:// 静态成员变量,用于保存单例实例static Singleton* instance;// 构造函数私有化,防止外部创建实例Singleton() {}public:// 静态成员函数,用于获取单例实例static Singleton* getInstance() {// 判断实例是否为空,如果为空则创建实例if (instance == nullptr) {instance = new Singleton();}return instance;}// 删除拷贝构造函数和拷贝赋值运算符,防止被复制Singleton(const Singleton&) = delete;Singleton& operator=(const Singleton&) = delete;
};Singleton* Singleton::instance = nullptr;  // 初始化静态成员变量int main() {// 获取单例实例Singleton* singleton1 = Singleton::getInstance();Singleton* singleton2 = Singleton::getInstance();// 判断两个实例是否相同if (singleton1 == singleton2) {cout << "两个实例相同" << endl;} else {cout << "两个实例不相同" << endl;}return 0;
}

3.传统单例模式的线程安全问题

饿汉式是线程安全的,懒汉式不是
当多线程执行getInstance时候,如果线程A判断当前实例为空,线程B正好判断到也为空,就会申请资源;当线程A恢复了后,继续执行,也会申请内存空间;就会出现两个实例,这就会出现问题;

4.解决方法

4.1静态局部变量

class Singleton {
private:Singleton() {}public:static Singleton* getInstance() {static Singleton instance;return &instance;}
};

4.2加锁

class Singleton {
private:// 静态成员变量,用于保存单例实例static Singleton* instance;// 构造函数私有化,防止外部创建实例Singleton() {}public:// 静态成员函数,用于获取单例实例static Singleton* getInstance() {// 判断实例是否为空,如果为空则创建实例Mutexlock lock(mutex);//加锁if (instance == nullptr) {instance = new Singleton();}return instance;}// 删除拷贝构造函数和拷贝赋值运算符,防止被复制Singleton(const Singleton&) = delete;Singleton& operator=(const Singleton&) = delete;
};Singleton* Singleton::instance = nullptr;  // 初始化静态成员变量int main() {// 获取单例实例Singleton* singleton1 = Singleton::getInstance();Singleton* singleton2 = Singleton::getInstance();// 判断两个实例是否相同if (singleton1 == singleton2) {cout << "两个实例相同" << endl;} else {cout << "两个实例不相同" << endl;}return 0;
}

4.3双重检查锁(DCL)

class Singleton {
private:// 静态成员变量,用于保存单例实例static Singleton* instance;// 构造函数私有化,防止外部创建实例Singleton() {}public:// 静态成员函数,用于获取单例实例static Singleton* getInstance() {// 判断实例是否为空,如果为空则创建实例if (instance == nullptr) {Mutexlock lock(mutex);if(instance==nullptr)instance = new Singleton();}return instance;}// 删除拷贝构造函数和拷贝赋值运算符,防止被复制Singleton(const Singleton&) = delete;Singleton& operator=(const Singleton&) = delete;
};Singleton* Singleton::instance = nullptr;  // 初始化静态成员变量int main() {// 获取单例实例Singleton* singleton1 = Singleton::getInstance();Singleton* singleton2 = Singleton::getInstance();// 判断两个实例是否相同if (singleton1 == singleton2) {cout << "两个实例相同" << endl;} else {cout << "两个实例不相同" << endl;}return 0;
}

4.4pthread_once

#include<iostream>
class singleton{
public:
static singleton& getinstance()
{
pthread_once(&ponce,init);//保证该函数只被执行一次
return instance;
}
private:
static void init()
{
instance=new singleton();
}
singleton(){}
~singleton(){}
static pthread_once_t  ponce;
static singleton* instance;
};
singleton::ponce=PTHREAD_ONCE_INIT;
singleton::instance=nullptr;

相关文章:

单例模式---线程安全实现

文章目录 1.单例模式的特点&#x1f60a;2.单例模式两种实现&#x1f923;&#x1f917;&#x1f60a;2.1 饿汉式2.2 懒汉式 3.传统单例模式的线程安全问题4.解决方法4.1静态局部变量4.2加锁4.3双重检查锁&#xff08;DCL&#xff09;4.4pthread_once 1.单例模式的特点&#x1…...

Agent技术在现代软件开发与应用中的探索

一、引言 随着计算机科学的快速发展&#xff0c;Agent技术作为人工智能和分布式计算领域的重要分支&#xff0c;已经渗透到软件开发的各个方面。Agent技术通过赋予软件实体自主性和交互性&#xff0c;使得软件系统能够更加智能、灵活地响应环境变化和用户需求。本文将对Agent技…...

c语言中extern定义和引用其他文件的变量,(sublime text)单独一个文件编译不会成功

关键字extern的作用 这个很常见的都知道是定义一个外部变量或函数&#xff0c;但并不是简单的建立两个文件&#xff0c;然后在用extern 定义在另一个非最初定义变量的文件里 区分文件和编译运行的文件 例如&#xff0c;一个文件夹里有文件a.c和文件b.c,在sublime text中直接…...

时序数据中的孤立野点、异常值识别及处理方法

目录 参考资料 对时序数据做差分&#xff1b; 参考资料 [1] 离群点&#xff08;孤立点、异常值&#xff09;检测方法 2017.6&#xff1b;...

JetBrains PyCharm 2024 mac/win版编程艺术,智慧新篇

JetBrains PyCharm 2024是一款功能强大的Python集成开发环境(IDE)&#xff0c;专为提升开发者的编程效率和体验而设计。这款IDE不仅继承了前代版本的优秀特性&#xff0c;还在多个方面进行了创新和改进&#xff0c;为Python开发者带来了全新的工作体验。 JetBrains PyCharm 20…...

MCU解决800V电动汽车牵引逆变器的常见设计挑战的3种方式

电动汽车 (EV) 牵引逆变器是电动汽车的。它将高压电池的直流电转换为多相&#xff08;通常为三相&#xff09;交流电以驱动牵引电机&#xff0c;并控制制动产生的能量再生。电动汽车电子产品正在从 400V 转向 800V 架构&#xff0c;这有望实现&#xff1a; 快速充电 – 在相同…...

《逆向投资 邓普顿的长赢投资法》

接下来跟大家一起学习《逆向投资 邓普顿的长赢投资法》。邓普顿被誉为20世纪最伟大的选股人之一&#xff0c;我非常确信林奇在他的《战胜华尔街》里也提到了邓普顿&#xff0c;可惜实在想不起来林奇是怎么形容邓普顿的。 邓普顿拥有70多年的投资生涯&#xff0c;在他晚年时曾总…...

C++中main函数的参数、返回值分别什么意思?main函数返回值跟普通函数返回值一样吗?

在C中&#xff0c;main函数是程序的入口点&#xff0c;即程序开始执行的地方。main函数可以有两种形式的签名&#xff08;signature&#xff09;&#xff1a; 标准的main函数&#xff0c;不接受任何参数&#xff0c;也不返回任何值&#xff1a; int main() {// 代码... }带有参…...

Java程序员学习Go开发Higress的WASM插件

Java程序员学习Go开发Higress的WASM插件 契机 ⚙ 今年天池大赛有higress相关挑战&#xff0c;研究一下。之前没搞过go&#xff0c;踩了很多坑&#xff0c;最主要的就是tinygo打包&#xff0c;多方寻求解决无果&#xff0c;结论是tinygo0.32go1.19无法在macos arm架构下打包。…...

Python入门-基本数据类型-数字类型

数字类型是指表示数字或者数值的数据类型。在Python语言中&#xff0c;数字类型有整型(int)、 浮点型(float)、复数型(complex)&#xff0c;对应数学中的整数、小数和复数&#xff0c;此外还有一种特殊 的整型&#xff0c;即布尔型(bool)。本节将对这4种数字类型进行详细介绍。…...

小程序web-view无法打开该页面的解决方法

问题&#xff1a;开发者工具可以正常打开&#xff0c;正式上线版小程序使用 web-view 组件测试时提示&#xff1a;“无法打开该页面&#xff0c;不支持打开 https://xxxxxx&#xff0c;请在“小程序右上角更多->反馈与投诉”中和开发者反馈。” 解决方法&#xff1a;需要配…...

海外媒体发稿:媒体宣发套餐的作用分享-华媒舍

一、神奇媒体宣发套餐 神奇媒体宣发套餐是一项专业的多媒体宣传推广服务&#xff0c;旨在帮助企业、个人快速提升品牌知名度和曝光度。它通过全面覆盖主流媒体、社交网络以及各大网络平台&#xff0c;将您的宣传信息传递给广泛的受众群体&#xff0c;实现全方位、多角度的宣传…...

【R语言】plot输出窗口大小的控制

如果需要输出png格式的图片并设置dpi&#xff0c;可采用以下代码 png("A1.png",width 10.09, height 10.35, units "in",res 300) 为了匹配对应的窗口大小&#xff0c;在输出的时候保持宽度和高度一致即可&#xff0c;步骤如下&#xff1a; 如上的“10…...

【shell脚本实战案例】数据磁盘初始化

文章目录 一、案例应用场景二、案例需求三、案例算法四、代码实现五、实现验证 &#x1f308;你好呀&#xff01;我是 山顶风景独好 &#x1f388;欢迎踏入我的博客世界&#xff0c;能与您在此邂逅&#xff0c;真是缘分使然&#xff01;&#x1f60a; &#x1f338;愿您在此停留…...

1.7 计算机体系结构分类

Flynn分类法 CISC与RISC...

数据结构之B树:深入了解与应用

目录 1. B树的基本概念 1.1 B树的定义 1.2 B树的性质 1.3 B树的阶 2. B树的结构 2.1 节点结构 2.2 节点分裂 2.3 节点合并 3. B树的基本操作 3.1 搜索 3.2 插入 3.3 删除 4. B树的应用 4.1 数据库索引 4.2 文件系统 4.3 内存管理 5. B树的优势和局限 5.1 优势…...

Tensorflow入门实战 T06-Vgg16 明星识别

目录 1、前言 2、 完整代码 3、运行过程结果 4、遇到的问题 5、小结 本文为&#x1f517;365天深度学习训练营 中的学习记录博客&#x1f356; 原作者&#xff1a;K同学啊 | 接辅导、项目定制 1、前言 这周主要是使用VGG16模型&#xff0c;完成明星照片识别。 2、 完整代…...

SpringBoot 3.3.1 + Minio 实现极速上传和预览模式

统一版本管理 <properties><minio.version>8.5.10</minio.version><aws.version>1.12.737</aws.version><hutool.version>5.8.28</hutool.version> </properties><!--minio --> <dependency><groupId>io.m…...

Linux: network: 丢包分析的另一个途径 tracing

丢包的另一个思路&#xff0c;内核里有些counter的计数&#xff0c;记录的不准确。这个时候怎么办&#xff1f;就需要使用另外一个方式&#xff1a;/sys/kernel/debug/tracing/event/skb/kfree_skb 的跟踪功能。这个算是对counter的一个补充&#xff0c;可以拿来做统计分析使用…...

【保姆级教程+配置源码】在VScode配置C/C++环境

目录 一、下载VScode 1. 在官网直接下载安装即可 2. 安装中文插件 二、下载C语言编译器MinGW-W64 三、配置编译器环境变量 1. 解压下载的压缩包&#xff0c;复制该文件夹下bin目录所在地址 2. 在电脑搜索环境变量并打开 3. 点击环境变量→选择系统变量里的Path→点击编…...

AI Agent与Agentic AI:原理、应用、挑战与未来展望

文章目录 一、引言二、AI Agent与Agentic AI的兴起2.1 技术契机与生态成熟2.2 Agent的定义与特征2.3 Agent的发展历程 三、AI Agent的核心技术栈解密3.1 感知模块代码示例&#xff1a;使用Python和OpenCV进行图像识别 3.2 认知与决策模块代码示例&#xff1a;使用OpenAI GPT-3进…...

【决胜公务员考试】求职OMG——见面课测验1

2025最新版&#xff01;&#xff01;&#xff01;6.8截至答题&#xff0c;大家注意呀&#xff01; 博主码字不易点个关注吧,祝期末顺利~~ 1.单选题(2分) 下列说法错误的是:&#xff08; B &#xff09; A.选调生属于公务员系统 B.公务员属于事业编 C.选调生有基层锻炼的要求 D…...

WordPress插件:AI多语言写作与智能配图、免费AI模型、SEO文章生成

厌倦手动写WordPress文章&#xff1f;AI自动生成&#xff0c;效率提升10倍&#xff01; 支持多语言、自动配图、定时发布&#xff0c;让内容创作更轻松&#xff01; AI内容生成 → 不想每天写文章&#xff1f;AI一键生成高质量内容&#xff01;多语言支持 → 跨境电商必备&am…...

ardupilot 开发环境eclipse 中import 缺少C++

目录 文章目录 目录摘要1.修复过程摘要 本节主要解决ardupilot 开发环境eclipse 中import 缺少C++,无法导入ardupilot代码,会引起查看不方便的问题。如下图所示 1.修复过程 0.安装ubuntu 软件中自带的eclipse 1.打开eclipse—Help—install new software 2.在 Work with中…...

Unit 1 深度强化学习简介

Deep RL Course ——Unit 1 Introduction 从理论和实践层面深入学习深度强化学习。学会使用知名的深度强化学习库&#xff0c;例如 Stable Baselines3、RL Baselines3 Zoo、Sample Factory 和 CleanRL。在独特的环境中训练智能体&#xff0c;比如 SnowballFight、Huggy the Do…...

Device Mapper 机制

Device Mapper 机制详解 Device Mapper&#xff08;简称 DM&#xff09;是 Linux 内核中的一套通用块设备映射框架&#xff0c;为 LVM、加密磁盘、RAID 等提供底层支持。本文将详细介绍 Device Mapper 的原理、实现、内核配置、常用工具、操作测试流程&#xff0c;并配以详细的…...

Java线上CPU飙高问题排查全指南

一、引言 在Java应用的线上运行环境中&#xff0c;CPU飙高是一个常见且棘手的性能问题。当系统出现CPU飙高时&#xff0c;通常会导致应用响应缓慢&#xff0c;甚至服务不可用&#xff0c;严重影响用户体验和业务运行。因此&#xff0c;掌握一套科学有效的CPU飙高问题排查方法&…...

Yolov8 目标检测蒸馏学习记录

yolov8系列模型蒸馏基本流程&#xff0c;代码下载&#xff1a;这里本人提交了一个demo:djdll/Yolov8_Distillation: Yolov8轻量化_蒸馏代码实现 在轻量化模型设计中&#xff0c;**知识蒸馏&#xff08;Knowledge Distillation&#xff09;**被广泛应用&#xff0c;作为提升模型…...

AGain DB和倍数增益的关系

我在设置一款索尼CMOS芯片时&#xff0c;Again增益0db变化为6DB&#xff0c;画面的变化只有2倍DN的增益&#xff0c;比如10变为20。 这与dB和线性增益的关系以及传感器处理流程有关。以下是具体原因分析&#xff1a; 1. dB与线性增益的换算关系 6dB对应的理论线性增益应为&…...

mac 安装homebrew (nvm 及git)

mac 安装nvm 及git 万恶之源 mac 安装这些东西离不开Xcode。及homebrew 一、先说安装git步骤 通用&#xff1a; 方法一&#xff1a;使用 Homebrew 安装 Git&#xff08;推荐&#xff09; 步骤如下&#xff1a;打开终端&#xff08;Terminal.app&#xff09; 1.安装 Homebrew…...