当前位置: 首页 > news >正文

《昇思25天学习打卡营第4天 | mindspore Transforms 数据变换常见用法》

1. 背景:

使用 mindspore 学习神经网络,打卡第四天;

2. 训练的内容:

使用 mindspore 的常见的数据变换 Transforms 的使用方法;

3. 常见的用法小节:

支持一系列常用的 Transforms 的操作

3.1 Vision Transforms 操作:

Rescale: 缩放,平移因子
Normalize: 图像归一化
HWC2CHW: 转换图像格式

# 接收一个数据增强操作序列,然后将其组合成单个数据增强操作
composed = transforms.Compose([vision.Rescale(1.0 / 255.0, 0),vision.Normalize(mean=(0.1307,), std=(0.3081,)),vision.HWC2CHW()]
)train_dataset = train_dataset.map(composed, 'image')
image, label = next(train_dataset.create_tuple_iterator())
print(image.shape)

3.2 Text Transforms

文本数据需要有分词(Tokenize)、构建词表、Token转Index等操作。这里简单介绍其使用方法

Tokenizer

# Tokenizer允许用户自由实现分词策略。随后我们利用map操作将此分词器应用到输入的文本中,对其进行分词
texts = ['Welcome to Beijing']
test_dataset = GeneratorDataset(texts, 'text')def my_tokenizer(content):return content.split()test_dataset = test_dataset.map(text.PythonTokenizer(my_tokenizer))
print(next(test_dataset.create_tuple_iterator()))

生成词表

# 使用Vocab生成词表。这里我们选择使用Vocab.from_dataset方法从数据集中生成词表
vocab = text.Vocab.from_dataset(test_dataset)
print(vocab.vocab())# 转成 Index
test_dataset = test_dataset.map(text.Lookup(vocab))
print(next(test_dataset.create_tuple_iterator()))

3.3 Lambda Transforms

通过 lambda 函数进行 transforms 变化

# Lambda函数是一种不需要名字的函数
test_dataset = GeneratorDataset([1, 2, 3], 'data', shuffle=False)
test_dataset = test_dataset.map(lambda x: x * 2)
print(list(test_dataset.create_tuple_iterator()))def func(x):return x * x + 2test_dataset = test_dataset.map(lambda x: func(x))print(list(test_dataset.create_tuple_iterator()))

活动参与链接:

https://xihe.mindspore.cn/events/mindspore-training-camp

相关文章:

《昇思25天学习打卡营第4天 | mindspore Transforms 数据变换常见用法》

1. 背景: 使用 mindspore 学习神经网络,打卡第四天; 2. 训练的内容: 使用 mindspore 的常见的数据变换 Transforms 的使用方法; 3. 常见的用法小节: 支持一系列常用的 Transforms 的操作 3.1 Vision …...

【Python时序预测系列】基于LSTM实现多输入多输出单步预测(案例+源码)

这是我的第312篇原创文章。 一、引言 单站点多变量输入多变量输出单步预测问题----基于LSTM实现。 多输入就是输入多个特征变量 多输出就是同时预测出多个标签的结果 单步就是利用过去N天预测未来1天的结果 二、实现过程 2.1 读取数据集 dfpd.read_csv("data.csv&qu…...

git客户端工具之Github,适用于windows和mac

对于我本人,我已经习惯了使用Github Desktop,不同的公司使用的代码管理平台不一样,就好奇Github Desktop是不是也适用于其他平台,结果是可以的。 一、克隆代码 File --> Clone repository… 选择第三种URL方式,输入url &…...

ai除安卓手机版APP软件一键操作自动渲染去擦消稀缺资源下载

安卓手机版:点击下载 苹果手机版:点击下载 电脑版(支持Mac和Windows):点击下载 一款全新的AI除安卓手机版APP,一键操作,轻松实现自动渲染和去擦消效果,稀缺资源下载 1、一键操作&…...

Unity获取剪切板内容粘贴板图片文件文字

最近做了一个发送消息的unity项目,需要访问剪切板里面的图片文字文件等,翻遍了网上的东西,看了不是需要导入System.Windows.Forms(关键导入了unity还不好用,只能用在纯c#项目中),所以我看了下py…...

利用谷歌云serverless代码托管服务Cloud Functions构建Gemini Pro API

谷歌在2024年4月发布了全新一代的多模态模型Gemini 1.5 Pro,Gemini 1.5 Pro不仅能够生成创意文本和代码,还能理解、总结上传的图片、视频和音频内容,并且支持高达100万tokens的上下文。在多个基准测试中表现优异,性能超越了ChatGP…...

极狐GitLab 17.0 重磅发布,100+ DevSecOps功能更新来啦~【一】

GitLab 是一个全球知名的一体化 DevOps 平台,很多人都通过私有化部署 GitLab 来进行源代码托管。极狐GitLab :https://gitlab.cn/install?channelcontent&utm_sourcecsdn 是 GitLab 在中国的发行版,专门为中国程序员服务。可以一键式部署…...

python实现符文加、解密

在历史悠久的加密技术中,恺撒密码以其简单却有效的原理闻名。通过固定的字母位移,明文可以被转换成密文,而解密则是逆向操作。这种技术不仅适用于英文字母,还可以扩展到其他语言的字符体系,如日语的平假名或汉语的拼音…...

【解释】i.MX6ULL_IO_电气属性说明

【解释】i.MX6ULL_IO_电气属性说明 文章目录 1 Hyst1.1 迟滞(Hysteresis)是什么?1.2 GPIO的Hyst. Enable Field 参数1.3 应用场景 2 Pull / Keep Select Field2.1 PUE_0_Keeper — Keeper2.2 PUE_1_Pull — Pull2.3 选择Keeper还是Pull 3 Dr…...

02-《石莲》

石 莲 石莲(学名:Sinocrassula indica A.Berger),别名因地卡,为二年生草本植物,全株无毛,具须根。花茎高15-60厘米,直立,常被微乳头状突起。茎生叶互生,宽倒披…...

MySQL之聚簇索引和非聚簇索引

1、什么是聚簇索引和非聚簇索引? 聚簇索引,通常也叫聚集索引。 非聚簇索引,指的是二级索引。 下面看一下它们的含义: 1.1、聚集索引选取规则 如果存在主键,主键索引就是聚集索引。如果不存在主键,将使…...

Web后端开发之前后端交互

http协议 http ● 超文本传输协议 (HyperText Transfer Protocol)服务器传输超文本到本地浏览器的传送协议 是互联网上应用最为流行的一种网络协议,用于定义客户端浏览器和服务器之间交换数据的过程。 HTTP是一个基于TCP/IP通信协议来传递数据. HTT…...

520. 检测大写字母 Easy

我们定义,在以下情况时,单词的大写用法是正确的: 全部字母都是大写,比如 "USA" 。 单词中所有字母都不是大写,比如 "leetcode" 。 如果单词不只含有一个字母,只有首字母大写&#xff0…...

vue的跳转传参

1、接收参数使用route,route包含路由信息,接收参数有两种方式,params和query path跳转只能使用query传参,name跳转都可以 params:获取来自动态路由的参数 query:获取来自search部分的参数 写法 path跳,query传 传参数 import { useRout…...

docker配置镜像源

1)打开 docker配置文件 sudo nano /etc/docker/daemon.json 2)添加 国内镜像源 {"registry-mirrors": ["https://akchsmlh.mirror.aliyuncs.com","https://registry.docker-cn.com","https://docker.mirrors.ustc…...

MySQL高级-SQL优化-insert优化-批量插入-手动提交事务-主键顺序插入

文章目录 1、批量插入1.1、大批量插入数据1.2、启动Linux中的mysql服务1.3、客户端连接到mysql数据库,加上参数 --local-infile1.4、查询当前会话中 local_infile 系统变量的值。1.5、开启从本地文件加载数据到服务器的功能1.6、创建表 tb_user 结构1.7、上传文件到…...

认识100种电路之振荡电路

在电子电路领域,振荡是一项至关重要的功能。那么,为什么电路中需要振荡?其背后的原理是什么?让我们一同深入探究。 【为什么需要振荡电路】 简单来说,振荡电路的存在是为了产生周期性的信号。在众多电子设备中&#…...

SSH 无密登录配置流程

一、免密登录原理 非对称加密: 由于对称加密的存在弊端,就产生了非对称加密,非对称加密中有两个密钥:公钥和私钥。公钥由私钥产生,但却无法推算出私钥;公钥加密后的密文,只能通过对应的私钥来解…...

Python自动化运维 系统基础信息模块

1.系统信息的收集 系统信息的收集,对于服务质量的把控,服务的监控等来说是非常重要的组成部分,甚至是核心的基础支撑部分。我们可以通过大量的核心指标数据,结合对应的检测体系,快速的发现异常现象的苗头,进…...

如何安装和配置Monit

前些天发现了一个巨牛的人工智能学习网站,通俗易懂,风趣幽默,忍不住分享一下给大家。点击跳转到网站。 关于 Monit Monit 是一个有用的程序,可以自动监控和管理服务器程序,以确保它们不仅保持在线,而且文…...

未来机器人的大脑:如何用神经网络模拟器实现更智能的决策?

编辑:陈萍萍的公主一点人工一点智能 未来机器人的大脑:如何用神经网络模拟器实现更智能的决策?RWM通过双自回归机制有效解决了复合误差、部分可观测性和随机动力学等关键挑战,在不依赖领域特定归纳偏见的条件下实现了卓越的预测准…...

【Python】 -- 趣味代码 - 小恐龙游戏

文章目录 文章目录 00 小恐龙游戏程序设计框架代码结构和功能游戏流程总结01 小恐龙游戏程序设计02 百度网盘地址00 小恐龙游戏程序设计框架 这段代码是一个基于 Pygame 的简易跑酷游戏的完整实现,玩家控制一个角色(龙)躲避障碍物(仙人掌和乌鸦)。以下是代码的详细介绍:…...

基于大模型的 UI 自动化系统

基于大模型的 UI 自动化系统 下面是一个完整的 Python 系统,利用大模型实现智能 UI 自动化,结合计算机视觉和自然语言处理技术,实现"看屏操作"的能力。 系统架构设计 #mermaid-svg-2gn2GRvh5WCP2ktF {font-family:"trebuchet ms",verdana,arial,sans-…...

.Net框架,除了EF还有很多很多......

文章目录 1. 引言2. Dapper2.1 概述与设计原理2.2 核心功能与代码示例基本查询多映射查询存储过程调用 2.3 性能优化原理2.4 适用场景 3. NHibernate3.1 概述与架构设计3.2 映射配置示例Fluent映射XML映射 3.3 查询示例HQL查询Criteria APILINQ提供程序 3.4 高级特性3.5 适用场…...

解锁数据库简洁之道:FastAPI与SQLModel实战指南

在构建现代Web应用程序时,与数据库的交互无疑是核心环节。虽然传统的数据库操作方式(如直接编写SQL语句与psycopg2交互)赋予了我们精细的控制权,但在面对日益复杂的业务逻辑和快速迭代的需求时,这种方式的开发效率和可…...

【磁盘】每天掌握一个Linux命令 - iostat

目录 【磁盘】每天掌握一个Linux命令 - iostat工具概述安装方式核心功能基础用法进阶操作实战案例面试题场景生产场景 注意事项 【磁盘】每天掌握一个Linux命令 - iostat 工具概述 iostat(I/O Statistics)是Linux系统下用于监视系统输入输出设备和CPU使…...

家政维修平台实战20:权限设计

目录 1 获取工人信息2 搭建工人入口3 权限判断总结 目前我们已经搭建好了基础的用户体系,主要是分成几个表,用户表我们是记录用户的基础信息,包括手机、昵称、头像。而工人和员工各有各的表。那么就有一个问题,不同的角色&#xf…...

(二)原型模式

原型的功能是将一个已经存在的对象作为源目标,其余对象都是通过这个源目标创建。发挥复制的作用就是原型模式的核心思想。 一、源型模式的定义 原型模式是指第二次创建对象可以通过复制已经存在的原型对象来实现,忽略对象创建过程中的其它细节。 📌 核心特点: 避免重复初…...

css的定位(position)详解:相对定位 绝对定位 固定定位

在 CSS 中,元素的定位通过 position 属性控制,共有 5 种定位模式:static(静态定位)、relative(相对定位)、absolute(绝对定位)、fixed(固定定位)和…...

土地利用/土地覆盖遥感解译与基于CLUE模型未来变化情景预测;从基础到高级,涵盖ArcGIS数据处理、ENVI遥感解译与CLUE模型情景模拟等

🔍 土地利用/土地覆盖数据是生态、环境和气象等诸多领域模型的关键输入参数。通过遥感影像解译技术,可以精准获取历史或当前任何一个区域的土地利用/土地覆盖情况。这些数据不仅能够用于评估区域生态环境的变化趋势,还能有效评价重大生态工程…...