数据结构递归(01)汉诺塔经典问题
说明:使用递归时,必须要遵守两个限制条件:
- 递归存在限制条件,满⾜这个限制条件时,递归不再继续;
- 每次递归调⽤之后越来越接近这个限制条件;
1 汉诺塔(Hanoi Tower)经典问题
1.1 汉诺塔问题描述
汉诺塔(Hanoi Tower)问题是一个经典的递归问题,起源于一个关于印度的传说。问题描述如下:
有一个三脚架,上面有三个从下到上依次递减的圆盘,总共有n个圆盘,这些圆盘最初都放在第一个柱子上,并且每个圆盘上都有不同的大小,使得较大的圆盘不能放在较小的圆盘上面。任务是将所有圆盘从第一个柱子移动到第三个柱子,同时满足以下规则:
- 每次只能移动一个圆盘。
- 每次移动的圆盘必须放在另一个柱子的顶部。
- 任何时候,较大的圆盘不能放在较小的圆盘上面。
1.2 汉诺塔问题分析
汉诺塔问题的分析可以通过递归的方式来理解。下面是针对n=1, n=2, n=3时的步骤说明(其中ABC分别对应第一二三个柱子):
#n=1时:
初始状态 第一步(完成)
A B C A B C
1 0 0 0 0 1 #n=2时:
初始状态 第一步 第二步 第三步(完成)
A B C A B C A B C A B C
1 0 0 0 1 0 0 1 0 0 0 1
2 0 0 2 0 0 0 0 2 0 0 2#n=3时:
说明:由n=2时的状态可知,2个盘从A移动到B或C均是可行的,那么这里我们就将1和2堪称整体。
初始状态 第一步 第二步 第三步(完成)
A B C A B C A B C A B C
1 0 0 0 1 0 0 1 0 0 0 1
2 0 0 0 2 0 0 2 0 0 0 2
3 0 0 3 0 0 0 0 3 0 0 3可以看到,这里的第一步和第三步实际上是使用了n=2时的结论。接下来我们把2 3换成出n-1 n之间的关系。
初始状态 第一步 第二步 第三步(完成)
A B C A B C A B C A B C
1 0 0 0 1 0 0 1 0 0 0 1
2 0 0 0 2 0 0 2 0 0 0 2
3 0 0 0 3 0 0 3 0 0 0 3
... ... ... ...
n 0 0 n 0 0 0 0 n 0 0 n
可以看出来,实际上和2与3 的关系是一致的。因此我们使用递归公式的分析进阶思考:
- 对于n个圆盘,将前n-1个圆盘从A柱移动到B柱,使用辅助柱C。
- 将第n个圆盘从A柱移动到C柱。
- 将n-1个圆盘从B柱移动到C柱,使用辅助柱A。
这个递归过程会不断重复,直到所有的圆盘都按照规则成功地移动到目标柱子上。递归的深度是n-1,因为每次移动n-1个圆盘,然后是第n个圆盘,再是n-1个圆盘。总共需要进行2^n - 1次移动才能完成n个圆盘的汉诺塔问题。
1.3 汉诺塔问题 逻辑解决方案
解决汉诺塔问题的方法是递归。对于n个圆盘,解决步骤可以概括为:
- 将上面的n-1个圆盘从起始柱子移动到辅助柱子(不违反规则)。
- 将最大的圆盘(第n个圆盘)从起始柱子移动到目标柱子。
- 将n-1个圆盘从辅助柱子移动到目标柱子(现在最大的圆盘已经在目标柱子上,不违反规则)。
这个过程可以继续递归地应用到n-1个圆盘上,直到n为1,这时问题就变得非常简单,只需将圆盘直接移动到目标柱子上。
2 代码实现
2.1 python代码实现
#!/usr/bin/python3
# -*- coding: UTF-8 -*-def hanoi(n, source, target, auxiliary):if n > 0:# 将n-1个圆盘从source移动到auxiliary,以target作为辅助hanoi(n-1, source, auxiliary, target)# 将第n个圆盘从source移动到targetprint(f"Move disk {n} from {source} to {target}")# 将n-1个圆盘从auxiliary移动到target,以source作为辅助hanoi(n-1, auxiliary, target, source)# 调用函数,将3个圆盘从A柱移动到C柱,B柱作为辅助
hanoi(3, 'A', 'C', 'B')
2.2 C++代码实现
#include <iostream>// 函数声明
void hanoi(int n, char source, char target, char auxiliary);int main() {int numDisks = 3; // 圆盘的数量hanoi(numDisks, 'A', 'C', 'B'); // 将3个圆盘从A柱移动到C柱,B柱作为辅助return 0;
}// 函数定义
void hanoi(int n, char source, char target, char auxiliary) {if (n <= 0) return; // 递归的基本情况// 将n-1个圆盘从source移动到auxiliary,以target作为辅助hanoi(n - 1, source, auxiliary, target);// 将第n个圆盘从source移动到targetstd::cout << "Move disk " << n << " from " << source << " to " << target << std::endl;// 将n-1个圆盘从auxiliary移动到target,以source作为辅助hanoi(n - 1, auxiliary, target, source);
}
相关文章:
数据结构递归(01)汉诺塔经典问题
说明:使用递归时,必须要遵守两个限制条件: 递归存在限制条件,满⾜这个限制条件时,递归不再继续; 每次递归调⽤之后越来越接近这个限制条件; 1 汉诺塔(Hanoi Tower)经典…...
计算机专业课面试常见问题-计算机网络篇
目录 1. 计算机网络分为哪 5 层? 2. TCP 协议简述? 3. TCP 和 UDP 的区别?->不同的应用场景? 4. 从浏览器输入网址到显示页…...
HarmonyOS ArkUi ArkWeb加载不出网页问题踩坑
使用 使用还是比较简单的,直接贴代码了 别忘了配置网络权限 Entry Component struct WebPage {State isAttachController: boolean falseState url: string State title: string Prop controller: web_webview.WebviewController new web_webview.WebviewCont…...
微信换手机号了怎么绑定新手机号?
微信换手机号了怎么绑定新手机号? 1、在手机上找到并打开微信; 2、打开微信后,点击底部我的,并进入微信设置; 3、在微信设置账号与安全内,找到手机号并点击进入; 4、选择更换手机号,…...
64.WEB渗透测试-信息收集- WAF、框架组件识别(4)
免责声明:内容仅供学习参考,请合法利用知识,禁止进行违法犯罪活动! 内容参考于: 易锦网校会员专享课 上一个内容:63.WEB渗透测试-信息收集- WAF、框架组件识别(3)-CSDN博客 我们在…...
java.lang.LinkageError: 链接错误的正确解决方法,亲测有效,嘿嘿,有效
文章目录 问题分析报错原因解决思路解决方法(含代码示例)1. 检查类加载器2. 避免在运行时修改类定义3. 更新或修复 JVM4. 检查应用程序的依赖使用 Maven 检查依赖项使用 Gradle 检查依赖项 java.lang.LinkageError 是 Java 虚拟机在尝试链接类定义时发生…...
python最基础
基本的类 python最基础、最常用的类主要有int整形,float浮点型,str字符串,list列表,dict字典,set集合,tuple元组等等。int整形、float浮点型一般用于给变量赋值,tuple元组属于不可变对象&#…...
Python学习路线图(2024最新版)
这是我最开始学Python时的一套学习路线,从入门到上手。(不敢说精通,哈哈~) 一、Python基础知识、变量、数据类型 二、Python条件结构、循环结构 三、Python函数 四、字符串 五、列表与元组 六、字典与集合 最后再送给大家一套免费…...
66、基于长短期记忆 (LSTM) 网络对序列数据进行分类
1、基于长短期记忆 (LSTM) 网络对序列数据进行分类的原理及流程 基于长短期记忆(LSTM)网络对序列数据进行分类是一种常见的深度学习任务,适用于处理具有时间或序列关系的数据。下面是在Matlab中使用LSTM网络对序列数据进行分类的基本原理和流…...
RabbitMQ消息可靠性等机制详解(精细版三)
目录 七 RabbitMQ的其他操作 7.1 消息的可靠性(发送可靠) 7.1.1 confim机制(保证发送可靠) 7.1.2 Return机制(保证发送可靠) 7.1.3 编写配置文件 7.1.4 开启Confirm和Return 7.2 手动Ack(保证接收可靠) 7.2.1 添加配置文件 7.2.2 手动ack 7.3 避免消息重复消费 7.3.…...
88888
49615...
深度学习之激活函数
激活函数的公式根据不同的函数类型而有所不同。以下是一些常见的激活函数及其数学公式: Sigmoid函数: 公式:f(x)特性:输出范围在0到1之间,常用于二分类问题,将输出转换为概率值。但存在梯度消失问题&#…...
OpenStack开源虚拟化平台(一)
目录 一、OpenStack背景介绍(一)OpenStack是什么(二)OpenStack的主要服务 二、计算服务Nova(一)Nova组件介绍(二)Libvirt简介(三)Nova中的RabbitMQ解析 OpenS…...
C++ | Leetcode C++题解之第207题课程表
题目: 题解: class Solution { private:vector<vector<int>> edges;vector<int> indeg;public:bool canFinish(int numCourses, vector<vector<int>>& prerequisites) {edges.resize(numCourses);indeg.resize(numCo…...
vue3中的自定义指令
全局自定义指令 假设我们要创建一个全局指令v-highlight,用于高亮显示元素。这个指令将接受一个颜色参数,并有一个可选的修饰符bold来决定是否加粗文本。 首先,在创建Vue应用时定义这个指令:(这里可以将指令抽离成单…...
Postman接口测试工具的原理及应用详解(一)
本系列文章简介: 在当今软件开发的世界中,接口测试作为保证软件质量的重要一环,其重要性不言而喻。随着前后端分离开发模式的普及,接口测试已成为连接前后端开发的桥梁,确保前后端之间的数据交互准确无误。在这样的背景…...
C++ initializer_list类型推导
目录 initializer_list C自动类型推断 auto typeid decltype initializer_list<T> C支持统一初始化{ },出现了一个新的类型initializer_list<T>,一切类型都可以用列表初始化。提供了一种更加灵活、安全和明确的方式来初始化对象。 class…...
造一个交互式3D火山数据可视化
本文由ScriptEcho平台提供技术支持 项目地址:传送门 使用 Plotly.js 创建交互式 3D 火山数据可视化 应用场景 本代码用于将火山数据库中的数据可视化,展示火山的高度、类型和状态。可用于地质学研究、教育和数据探索。 基本功能 该代码使用 Plotly…...
【网络安全】一文带你了解什么是【CSRF攻击】
CSRF(Cross-Site Request Forgery,跨站请求伪造)是一种网络攻击方式,它利用已认证用户在受信任网站上的身份,诱使用户在不知情的情况下执行恶意操作。具体来说,攻击者通过各种方式(如发送恶意链…...
短视频电商源码如何选择
在数字时代的浪潮下,短视频电商以其直观、生动、互动性强的特点,迅速崛起成为电商行业的一股新势力。对于有志于进军短视频电商领域的创业者来说,选择一款合适的短视频电商源码至关重要。本文将从多个角度探讨如何选择短视频电商源码…...
【Axure高保真原型】引导弹窗
今天和大家中分享引导弹窗的原型模板,载入页面后,会显示引导弹窗,适用于引导用户使用页面,点击完成后,会显示下一个引导弹窗,直至最后一个引导弹窗完成后进入首页。具体效果可以点击下方视频观看或打开下方…...
SkyWalking 10.2.0 SWCK 配置过程
SkyWalking 10.2.0 & SWCK 配置过程 skywalking oap-server & ui 使用Docker安装在K8S集群以外,K8S集群中的微服务使用initContainer按命名空间将skywalking-java-agent注入到业务容器中。 SWCK有整套的解决方案,全安装在K8S群集中。 具体可参…...
基于uniapp+WebSocket实现聊天对话、消息监听、消息推送、聊天室等功能,多端兼容
基于 UniApp + WebSocket实现多端兼容的实时通讯系统,涵盖WebSocket连接建立、消息收发机制、多端兼容性配置、消息实时监听等功能,适配微信小程序、H5、Android、iOS等终端 目录 技术选型分析WebSocket协议优势UniApp跨平台特性WebSocket 基础实现连接管理消息收发连接…...
【磁盘】每天掌握一个Linux命令 - iostat
目录 【磁盘】每天掌握一个Linux命令 - iostat工具概述安装方式核心功能基础用法进阶操作实战案例面试题场景生产场景 注意事项 【磁盘】每天掌握一个Linux命令 - iostat 工具概述 iostat(I/O Statistics)是Linux系统下用于监视系统输入输出设备和CPU使…...
视频字幕质量评估的大规模细粒度基准
大家读完觉得有帮助记得关注和点赞!!! 摘要 视频字幕在文本到视频生成任务中起着至关重要的作用,因为它们的质量直接影响所生成视频的语义连贯性和视觉保真度。尽管大型视觉-语言模型(VLMs)在字幕生成方面…...
uniapp微信小程序视频实时流+pc端预览方案
方案类型技术实现是否免费优点缺点适用场景延迟范围开发复杂度WebSocket图片帧定时拍照Base64传输✅ 完全免费无需服务器 纯前端实现高延迟高流量 帧率极低个人demo测试 超低频监控500ms-2s⭐⭐RTMP推流TRTC/即构SDK推流❌ 付费方案 (部分有免费额度&#x…...
leetcodeSQL解题:3564. 季节性销售分析
leetcodeSQL解题:3564. 季节性销售分析 题目: 表:sales ---------------------- | Column Name | Type | ---------------------- | sale_id | int | | product_id | int | | sale_date | date | | quantity | int | | price | decimal | -…...
Redis:现代应用开发的高效内存数据存储利器
一、Redis的起源与发展 Redis最初由意大利程序员Salvatore Sanfilippo在2009年开发,其初衷是为了满足他自己的一个项目需求,即需要一个高性能的键值存储系统来解决传统数据库在高并发场景下的性能瓶颈。随着项目的开源,Redis凭借其简单易用、…...
二维FDTD算法仿真
二维FDTD算法仿真,并带完全匹配层,输入波形为高斯波、平面波 FDTD_二维/FDTD.zip , 6075 FDTD_二维/FDTD_31.m , 1029 FDTD_二维/FDTD_32.m , 2806 FDTD_二维/FDTD_33.m , 3782 FDTD_二维/FDTD_34.m , 4182 FDTD_二维/FDTD_35.m , 4793...
从零手写Java版本的LSM Tree (一):LSM Tree 概述
🔥 推荐一个高质量的Java LSM Tree开源项目! https://github.com/brianxiadong/java-lsm-tree java-lsm-tree 是一个从零实现的Log-Structured Merge Tree,专为高并发写入场景设计。 核心亮点: ⚡ 极致性能:写入速度超…...
