当前位置: 首页 > news >正文

从0开始学习pyspark--pyspark的数据读取[第4节]

在PySpark中,读取文件型数据是一个常见的操作,Spark支持多种数据格式,如CSV、JSON、Parquet、Avro等。以下是一些常用的方法来读取不同格式的文件数据。

读取文本型数据

  1. 读取CSV文件:
    • 使用spark.read.csv方法读取CSV文件,可以通过参数指定列分隔符、头部等信息。
    from pyspark.sql import SparkSession
    spark = SparkSession.builder \.appName("CSV Read Example") \.getOrCreate()
    df = spark.read.csv("path/to/your/csv/file.csv", header=True, inferSchema=True)
    
    • header=True表示文件包含头部信息。
    • inferSchema=True表示让Spark自动推断列的数据类型。
  2. 读取JSON文件:
    • 使用spark.read.json方法读取JSON文件,可以是单个JSON文件或者一个包含多个JSON对象的文件。
    df = spark.read.json("path/to/your/json/file.json")
    
  3. 读取Parquet文件:
    • 使用spark.read.parquet方法读取Parquet文件,这是一种列式存储格式,非常适合用于大数据处理。
    df = spark.read.parquet("path/to/your/parquet/file.parquet")
    
  4. 读取Avro文件:
    • Spark没有内置的Avro支持,但是可以通过添加依赖并使用spark.read.format方法来读取Avro文件。
    df = spark.read.format("com.databricks.spark.avro").load("path/to/your/avro/file.avro")
    
    • 在使用Avro之前,需要确保已经将Avro的Spark插件添加到你的项目中。
  5. 读取文本文件:
    • 使用spark.read.text方法读取文本文件,每一行都会成为DataFrame中的一行。
    df = spark.read.text("path/to/your/text/file.txt")
    
  6. 读取其他格式:
    • 对于其他格式,可以使用spark.read.format方法指定格式,并使用load方法加载文件。
    df = spark.read.format("your_format").load("path/to/your/file")
    

在读取文件时,还可以指定其他选项,如分区信息、编码、压缩等。例如,如果文件存储在HDFS上,或者需要指定特定的文件系统,可以使用spark.read.format("csv").option("path", "hdfs://path/to/your/file.csv").load()

读取hive数据

在PySpark中读取Hive数据需要确保你的Spark环境已经正确配置了Hive支持,并且你的Spark集群可以访问Hive Metastore。以下是一些基本步骤来在PySpark中读取Hive数据:

  1. 确保Hive依赖:
    确保你的PySpark环境中包含了Hive依赖。如果你使用的是Apache Spark内置的Hive支持,通常这些依赖已经包含在内。如果你是在本地运行,可能需要添加Hive依赖到你的Spark环境中。
  2. 配置Hive Metastore:
    你需要配置Spark来连接到Hive Metastore。这通常涉及到设置hive.metastore.uris参数,该参数指向Hive Metastore服务的URI。
  3. 初始化SparkSession:
    使用SparkSession.builder来配置和初始化你的SparkSession,确保启用了Hive支持。
  4. 读取Hive表:
    使用SparkSessiontable方法来读取Hive表。
    以下是一个示例代码:
from pyspark.sql import SparkSession
# 初始化SparkSession,启用Hive支持
spark = SparkSession.builder \.appName("Hive Read Example") \.enableHiveSupport() \.getOrCreate()
# 读取Hive表
df = spark.table("your_database.your_table")
# 显示DataFrame的内容
df.show()

在这个例子中,your_database是Hive数据库的名称,your_table是你要读取的表的名称。
如果你需要指定Hive Metastore的URI,可以在SparkSession.builder中设置相关的Hive配置:

spark = SparkSession.builder \.appName("Hive Read Example") \.enableHiveSupport() \.config("hive.metastore.uris", "thrift://<metastore_host>:<port>") \.getOrCreate()

替换<metastore_host><port>为你的Hive Metastore服务的主机和端口。
请注意,如果你的Spark集群是在YARN上运行的,或者你有其他的集群管理器,你可能需要根据你的环境进行额外的配置。此外,确保你有足够的权限来访问Hive表和Metastore。

从HDFS读取数据

在PySpark中读取存储在HDFS(Hadoop Distributed File System)上的数据相对简单。你只需要确保你的Spark环境已经配置了与HDFS的连接,并且你的Spark应用程序有权限访问HDFS上的数据。
以下是一些基本步骤来在PySpark中读取HDFS数据:

  1. 确保Hadoop依赖:
    确保你的PySpark环境中包含了Hadoop依赖。如果你是在本地运行,可能需要添加Hadoop的jar包到你的Spark环境中。
  2. 配置HDFS连接:
    你需要配置Spark来连接到HDFS。这通常涉及到设置fs.defaultFS参数,该参数指向HDFS的NameNode的URI。
  3. 初始化SparkSession:
    使用SparkSession.builder来配置和初始化你的SparkSession。
  4. 读取HDFS上的数据:
    使用SparkSessionread方法来读取HDFS上的数据。你可以指定数据格式,如CSV、JSON、Parquet等。
    以下是一个示例代码:
from pyspark.sql import SparkSession
# 初始化SparkSession
spark = SparkSession.builder \.appName("HDFS Read Example") \.getOrCreate()
# 读取HDFS上的CSV文件
df = spark.read.csv("hdfs://<namenode_host>:<port>/<path_to_file>", header=True, inferSchema=True)
# 读取HDFS上的JSON文件
df = spark.read.json("hdfs://<namenode_host>:<port>/<path_to_file>")
# 读取HDFS上的Parquet文件
df = spark.read.parquet("hdfs://<namenode_host>:<port>/<path_to_file>")
# 显示DataFrame的内容
df.show()

在这个例子中,<namenode_host><port>是HDFS NameNode的主机和端口,<path_to_file>是HDFS上文件的路径。你需要根据你的HDFS集群配置替换这些值。
如果你的Spark集群已经在Hadoop环境中配置好了,并且你的Spark应用程序有权限访问HDFS,那么通常不需要额外配置就可以直接读取HDFS上的数据。如果你的Spark集群是在YARN上运行的,或者你有其他的集群管理器,你可能需要根据你的环境进行额外的配置。此外,确保你有足够的权限来访问HDFS上的数据。

相关文章:

从0开始学习pyspark--pyspark的数据读取[第4节]

在PySpark中&#xff0c;读取文件型数据是一个常见的操作&#xff0c;Spark支持多种数据格式&#xff0c;如CSV、JSON、Parquet、Avro等。以下是一些常用的方法来读取不同格式的文件数据。 读取文本型数据 读取CSV文件: 使用spark.read.csv方法读取CSV文件&#xff0c;可以通…...

极速升级:MacOS系统中Pip源的切换指南

极速升级&#xff1a;MacOS系统中Pip源的切换指南 在MacOS系统中&#xff0c;Python的包管理工具Pip是我们管理和安装Python库的得力助手。然而&#xff0c;默认的Pip源在国外&#xff0c;对于国内用户来说&#xff0c;访问速度可能较慢。因此&#xff0c;更换Pip源以提高下载…...

服务器的分类,主流服务器的应用场景

一、服务器分类 服务器可以按应用层次、体系架构、用途、外形等进行分类。以下是详细说明&#xff1a; 按应用层次分类 入门级服务器&#xff1a;这些服务器一般用于小型企业或部门的简单任务&#xff0c;如文件共享和打印服务。工作组级服务器&#xff1a;适用于中小型企业&…...

Objects and Classes (对象和类)

Objects and Classes [对象和类] 1. Procedural and Object-Oriented Programming (过程性编程和面向对象编程)2. Abstraction and Classes (抽象和类)2.1. Classes in C (C 中的类)2.2. Implementing Class Member Functions (实现类成员函数)2.3. Using Classes (使用类) Ref…...

从单点到全景:视频汇聚/安防监控EasyCVR全景视频监控技术的演进之路

在当今日新月异的科技浪潮中&#xff0c;安防监控领域的技术发展日新月异&#xff0c;全景摄像机便是这一领域的杰出代表。它以其独特的360度无死角监控能力&#xff0c;为各行各业提供了前所未有的安全保障&#xff0c;成为现代安防体系中的重要组成部分。 一、全景摄像机的技…...

Java学习 -Golang开发环境+目录结构+编译+部署

开发环境 环境变量设置 GOROOT 指定 golang sdk 的安装目录GOPATH golang 工作目录&#xff0c;项目的源码放在这个目录下PATH 将 GOROOT/bin 放在 Path 路径下&#xff0c;方便命令行能直接运行 golang的命令行工具项目目录结构 |--project // 位于G…...

Redis 典型应用——缓存(缓存预热,穿透,雪崩,击穿)

一、缓存 缓存是计算机中一个很经典的概念&#xff0c;核心思路是把一些常用的数据放到访问速度更快的地方&#xff0c;方便随时读取&#xff1b; 但对于计算机硬件来说&#xff0c;往往访问速度越快的设备&#xff0c;成本越高&#xff0c;存储空间越小&#xff0c;缓存是更…...

Sharding-JDBC分库分表的基本使用

前言 传统的小型应用通常一个项目一个数据库&#xff0c;单表的数据量在百万以内&#xff0c;对于数据库的操作不会成为系统性能的瓶颈。但是对于互联网应用&#xff0c;单表的数据量动辄上千万、上亿&#xff0c;此时通过数据库优化、索引优化等手段&#xff0c;对数据库操作…...

7月信用卡新规下:信用卡欠的钱不用还了?

说到信用卡&#xff0c;现在基本上人手一张&#xff0c;大家都有使用过。但你知道吗&#xff0c;使用信用卡不是这么简单容易的事&#xff0c;比如会对你的贷款有影响&#xff0c;透支不还逾期对生活的影响&#xff0c;信用卡新规对持卡人和银行那边的影响。 一、只要不逾期&am…...

坑——python的redis库的decode_responses设置

python的redis库查询返回的值默认是返回字节串&#xff0c;可以在redis.Redis()方法中通过设置decode_responses参数&#xff0c;让返回值直接是字符串&#xff1b; 查询返回字节串是因为Redis()方法中decode_responses默认值是False&#xff1a; 设置decode_responses为True就…...

从项目中学习Bus-Off的快慢恢复

0 前言 说到Bus-Off&#xff0c;大家应该都不陌生&#xff0c;使用VH6501干扰仪进行测试的文章在网上数不胜数&#xff0c;但是一般大家都是教怎么去干扰&#xff0c;但是说如何去看快慢恢复以及对快慢恢复做出解释比较少&#xff0c;因此本文以实践的视角来讲解Bus-Off的快慢恢…...

视频参考帧和重构帧复用

1、 视频编码中的参考帧和重构帧 从下图的编码框架可以看出&#xff0c;每编码一帧需要先使用当前帧CU(n)减去当前帧的参考帧CU&#xff08;n&#xff09;得到残差。同时&#xff0c;需要将当前帧的重构帧CU*&#xff08;n&#xff09;输出&#xff0c;然后再读取重构帧进行预测…...

js修改scss变量

style.scss $color : var(--color,#ccc); // 默认值 #ccc .color{background: $color; } 定义了一个scss变量&#xff08;$color&#xff09;&#xff0c;用普通的css变量&#xff08;--color&#xff09;给他赋值&#xff0c;这里需要一个默认值&#xff0c;此时css变量(--co…...

【中霖教育怎么样】报考注册会计师有年龄限制吗?

【中霖教育怎么样】报考注册会计师有年龄限制吗? 申请参加注册会计师考试有没有年龄约束? 对于注册会计师的考试&#xff0c;不存在具体的年龄上限。而且该考试的入学门栏相对低&#xff0c;主要对考生的年龄下限规定。 在专业阶段&#xff0c;注册会计师考试要求考生具备…...

PHP验证日本手机电话号码

首先&#xff0c;您需要了解手机号码的规格。 根据 &#xff0c;手机和PHS&#xff08;个人手持电话系统&#xff09;可以理解为以“070”、“080”和“090”开头的11位数字。 此外&#xff0c;以“050”开头的11位特定IP电话号码也将包含在该目标中。 关于以“060”开头的F…...

Qt 配置ASan

Qt 配置ASan 文章目录 Qt 配置ASan摘要关于ASan&#xff08;AddressSanitizer&#xff09;在Qt中配置 ASan1. 安装必要的工具2. 修改项目的 .pro 文件3. 重新构建项目4. 运行应用程序5. 分析错误报告示例注意事项 关键字&#xff1a; Qt、 ASan、 AddressSanitizer 、 GCC …...

MySQL常用操作命令大全

文章目录 一、连接与断开数据库1.1 连接数据库1.2 选择数据库1.3 断开数据库 二、数据库操作2.1 创建数据库2.2 查看数据库列表2.3 删除数据库 三、表操作3.1 创建表3.2 查看表结构3.3 修改表结构3.3.1 添加列3.3.2 删除列3.3.3 修改列数据类型 3.4 删除表 四、数据操作4.1 插入…...

有人物联的串口服务器USR-TCP232-410S基本测试通信和使用方案(485串口和232串口)

1.将 410S(USR-TCP232-410S&#xff0c;简称 410S 下同)的串口通过串口线(或USB 转串口线)与计算机相连接&#xff0c;通过网线将 410S 的网口 PC 的网口相连接&#xff0c;检测硬件连接无错误后&#xff0c;接入我们配送的电源适配器&#xff0c;给 410S 供电。观察指示灯状态…...

二维码登录的原理

二维码登录的原理: 二维码登录是一种基于移动设备和网络技术的便捷登录方式。其原理主要依赖于以下几个关键要素: 随机生成:服务器端随机生成一个具有唯一性和时效性的二维码。编码信息:这个二维码包含了特定的登录信息,例如用户标识、会话标识、时间戳等。扫描识别:用户…...

归并排序详解(递归与非递归)

归并排序是建立在归并操作上的一种有效算法。该算法是采用分治法的一个非常典型的应用。将已有序的子序列合并&#xff0c;得到完全有序的序列&#xff1b;即先使每个子序列有序&#xff0c;再使子序列间断有序。若将两个有序表合并成一个有序表&#xff0c;成为二路归并。 一…...

网络六边形受到攻击

大家读完觉得有帮助记得关注和点赞&#xff01;&#xff01;&#xff01; 抽象 现代智能交通系统 &#xff08;ITS&#xff09; 的一个关键要求是能够以安全、可靠和匿名的方式从互联车辆和移动设备收集地理参考数据。Nexagon 协议建立在 IETF 定位器/ID 分离协议 &#xff08;…...

线程同步:确保多线程程序的安全与高效!

全文目录&#xff1a; 开篇语前序前言第一部分&#xff1a;线程同步的概念与问题1.1 线程同步的概念1.2 线程同步的问题1.3 线程同步的解决方案 第二部分&#xff1a;synchronized关键字的使用2.1 使用 synchronized修饰方法2.2 使用 synchronized修饰代码块 第三部分&#xff…...

AtCoder 第409​场初级竞赛 A~E题解

A Conflict 【题目链接】 原题链接&#xff1a;A - Conflict 【考点】 枚举 【题目大意】 找到是否有两人都想要的物品。 【解析】 遍历两端字符串&#xff0c;只有在同时为 o 时输出 Yes 并结束程序&#xff0c;否则输出 No。 【难度】 GESP三级 【代码参考】 #i…...

Java多线程实现之Callable接口深度解析

Java多线程实现之Callable接口深度解析 一、Callable接口概述1.1 接口定义1.2 与Runnable接口的对比1.3 Future接口与FutureTask类 二、Callable接口的基本使用方法2.1 传统方式实现Callable接口2.2 使用Lambda表达式简化Callable实现2.3 使用FutureTask类执行Callable任务 三、…...

Android Bitmap治理全解析:从加载优化到泄漏防控的全生命周期管理

引言 Bitmap&#xff08;位图&#xff09;是Android应用内存占用的“头号杀手”。一张1080P&#xff08;1920x1080&#xff09;的图片以ARGB_8888格式加载时&#xff0c;内存占用高达8MB&#xff08;192010804字节&#xff09;。据统计&#xff0c;超过60%的应用OOM崩溃与Bitm…...

优选算法第十二讲:队列 + 宽搜 优先级队列

优选算法第十二讲&#xff1a;队列 宽搜 && 优先级队列 1.N叉树的层序遍历2.二叉树的锯齿型层序遍历3.二叉树最大宽度4.在每个树行中找最大值5.优先级队列 -- 最后一块石头的重量6.数据流中的第K大元素7.前K个高频单词8.数据流的中位数 1.N叉树的层序遍历 2.二叉树的锯…...

html-<abbr> 缩写或首字母缩略词

定义与作用 <abbr> 标签用于表示缩写或首字母缩略词&#xff0c;它可以帮助用户更好地理解缩写的含义&#xff0c;尤其是对于那些不熟悉该缩写的用户。 title 属性的内容提供了缩写的详细说明。当用户将鼠标悬停在缩写上时&#xff0c;会显示一个提示框。 示例&#x…...

关键领域软件测试的突围之路:如何破解安全与效率的平衡难题

在数字化浪潮席卷全球的今天&#xff0c;软件系统已成为国家关键领域的核心战斗力。不同于普通商业软件&#xff0c;这些承载着国家安全使命的软件系统面临着前所未有的质量挑战——如何在确保绝对安全的前提下&#xff0c;实现高效测试与快速迭代&#xff1f;这一命题正考验着…...

Python 包管理器 uv 介绍

Python 包管理器 uv 全面介绍 uv 是由 Astral&#xff08;热门工具 Ruff 的开发者&#xff09;推出的下一代高性能 Python 包管理器和构建工具&#xff0c;用 Rust 编写。它旨在解决传统工具&#xff08;如 pip、virtualenv、pip-tools&#xff09;的性能瓶颈&#xff0c;同时…...

回溯算法学习

一、电话号码的字母组合 import java.util.ArrayList; import java.util.List;import javax.management.loading.PrivateClassLoader;public class letterCombinations {private static final String[] KEYPAD {"", //0"", //1"abc", //2"…...