当前位置: 首页 > news >正文

Andrej Karpathy提出未来计算机2.0构想: 完全由神经网络驱动!网友炸锅了

昨天凌晨,知名人工智能专家、OpenAI的联合创始人Andrej Karpathy提出了一个革命性的未来计算机的构想:完全由神经网络驱动的计算机,不再依赖传统的软件代码。

嗯,这是什么意思?全部原生LLM+硬件设备的意思吗?

这一概念的提出,引发了网友广泛的讨论和巨大关注,奶茶觉得这个设想看上去会不会太宏观而且不切实际,于是查看了Karpathy 在帖子下的回复,试图找到支撑性的证据:

图源@小互

▲图源@小互

根据Karpathy的解释,在这种架构下,设备的输入(如音频、视频、触摸,甚至自然语言)将直接传递给神经网络,输出则直接显示为结果,可能是音频/视频,也可能是交互界面在屏幕上。整个计算过程完全依赖于神经网络的处理能力,这种简化的架构将彻底改变计算机的工作方式。

有网友形象地比喻,这类似于人类大脑和躯体的关系:大脑负责处理,而躯干(外设)负责执行输出。

奶茶总结了一下网友们对这个设想的担忧:

  • 透明度和可解释性:完全依赖神经网络的系统可能难以解释其决策过程,导致“黑匣子”问题,增加了监管和信任的难度。

  • 算力和能源消耗:如此大规模的神经网络计算需要极高的算力和能源,可能对资源和环境造成巨大压力。(哈哈,虽然但是,最后的赢家不还是英伟达)

  • 安全性和隐私:神经网络驱动的系统可能容易受到攻击,尤其是如果数据输入未经严格验证,可能导致安全和隐私问题。

  • 技术依赖:过度依赖神经网络技术可能限制计算机的灵活性和适应性,尤其在面对非结构化或突发性问题时。

大家怎么看捏! 这个设想究竟是不是可以看得到的未来呢~

他爱死了Apple Intelligence!

Andrej Karpathy提出的未来计算机构想有没有让大家联想到前几天发布的Apple Intelligence?

奶茶觉得Andrej Karpathy提到的未来愿景与Apple Intelligence有着异曲同工之妙。于是我查找了Karpathy对Apple Intelligence的看法,果然,他公开坦言对这个概念爱不释手。以下是他之前的发言:

“事实上,我非常非常喜欢苹果公司发布的 Apple Intelligence。在苹果公司,人工智能成为整个操作系统的基础,这是一个非常激动人心的时刻。有几个主要的主题:

  • 多模态I/O:支持文本、音频、图像和视频的读写功能,可以说这些都是原生的人类API。

  • Agentic:允许操作系统和应用程序的所有部分通过‘函数调用’进行互操作。用于核心进程的LLM(大语言模型)可以根据用户查询安排和协调各部分的工作。

  • 无摩擦:高度无摩擦、快速、‘始终在线’和情景化地全面集成这些功能。无需四处复制粘贴信息、提示工程等,根据需要调整用户界面。

  • 主动性:不只是根据提示执行任务,而是预测提示、提出建议并主动行动。

  • 授权分级:尽可能使用设备端算力(苹果芯片非常有用且适合),但也允许将工作分派到云端。

  • 模块化:允许操作系统访问并支持不断增长的LLM生态系统(例如ChatGPT合作公告)。

  • 隐私:保障用户隐私。

我们很快就会进入这样一个世界:你可以打开手机,随便说点什么。它会回应你,而且它认识你。一切都很顺利。这太令人兴奋了,作为一名用户,我非常期待。”

Karpathy说清醒梦很像Sora

Andrej Karpathy不仅在技术上有深厚造诣,而且非常擅长进行内心观察。他之前就写过一个很出圈的帖子,谈到了断网的感受。最近,他除了发表争议与希望并存的未来计算机构想,还发表了一个Sora相关的描述也很热门!他记录了自己的一次清醒梦体验~

何为清醒梦呢,就是指做梦者意识到自己在做梦,并且能够在一定程度上控制梦境中的场景、角色或自己的行为。一位网的描述很准确:清醒梦的梦境会根据你的关注点生成细节,而你没有直接审视的部分则呈现得不准确。这种现象有点像游戏的图形渲染,为了节省资源,只渲染必要的部分。

Karpathy在帖子中提到,他感觉梦境像一个Sora模型,充满了丰富的细节,而且自己的智商突然提高了10点。

清醒梦这个比喻还蛮有趣的!把Sora模型只渲染必要部分的原理和清醒梦的体验联系在一起,既浪漫又贴切,很妙!!

我相信而且践行了一万小时

奶茶最近还看了Andrej Karpathy在州大学伯克利分校的AI hackathon做的演讲。Karpathy讲了几点还蛮有意思的,和大家分享下:

  • 计算的本质正在改变,我们正在进入一个新的计算范式,这种情况非常罕见。我几乎觉得像是回到了 1980 年代的计算机时代,不再是中央处理器 (CPU) 处理指令和字节,而是大语言模型 (LLM) 处理 Token,我们有 Token 的上下文窗口,而不是 RAM 中的字节,并且有磁盘等的等效物。这有点像计算机,但现在大语言模型是新的核心,这就是为什么我称之为大语言模型操作系统LLM OS

  • OpenAI的成立的初衷是为了与Google形成某种平衡,那时,Google就像一只拥有700亿自由现金流的巨兽,几乎雇用了半个AI研究行业。我们只有八个人和一台笔记本电脑,这种对比真的很有趣,也非常符合我的背景。OpenAI最初探索了大量内部项目,我们招聘了一些非常优秀的人才,其中许多项目并没有走太远,但有些确实成功了,例如在最早期我们开发了一个Reddit聊天机器人试图与Google竞争,当Transformer出现后,它被转化为一个更好的东西,领域从Reddit扩展到许多其他,而随后有了GPT-1、GPT-2、GPT-3、GPT-4,甚至有了GPT-4o。我见证了这些“小雪球”的发展过程~直到今天,OpenAI的市值达到了可能接近1000亿美元,许多你们在过去两天中也在做的小项目,也许它们不会成功,但其中一些可能会成功。你们应该继续推动你们的小雪球,也许它们会发展成一个真正的大雪球~

  • 我很相信Malcolm Gladwell提出的1万个小时的概念。我相信这个理论,成功来自于重复练习,我们应该非常愿意投入那1万个小时,不要太在意自己在做什么,是否成功或失败,简单地计算你投入了多少时间。即使是那些我失败的项目,它们没有发展成任何东西,但它们也增加了我开发专业知识的时间总数,让我能够自信地承担这些项目并使其成功!

大家如果感兴趣Andrej Karpathy全部演讲的内容,可以在评论区告诉我们~我们安排更详细的汇报🫡

参考资料

[1]https://x.com/karpathy/status/1807497426816946333
[2]https://x.com/imxiaohu/status/1807772757448618285
[3]https://mp.weixin.qq.com/s/h5iTG2wwwekUvkUoADBPIw
[4]https://twitter.com/karpathy/status/1806400213793534010
[5]https://mp.weixin.qq.com/s?__biz=Mzg3MTkxMjYzOA==&mid=2247493816&idx=1&sn=bde3c57d4dce1b0536679459ba78b4d3&chksm=cef5ed69f982647fb01d44cd284ed178fe38d5c3a734e2f231933857d24e4e1f141011276476&scene=21#wechat_redirect
[6]https://mp.weixin.qq.com/s/Txx7YcoQFSV8gSEydhXzSg

相关文章:

Andrej Karpathy提出未来计算机2.0构想: 完全由神经网络驱动!网友炸锅了

昨天凌晨,知名人工智能专家、OpenAI的联合创始人Andrej Karpathy提出了一个革命性的未来计算机的构想:完全由神经网络驱动的计算机,不再依赖传统的软件代码。 嗯,这是什么意思?全部原生LLM硬件设备的意思吗&#xff1f…...

用国内镜像安装docker 和 docker-compose (ubuntu)

替代方案,改用国内的镜像站(网易镜像) 1.清除旧版本(可选操作) for pkg in docker.io docker-doc docker-compose podman-docker containerd runc; do apt-get remove $pkg; done 2.安装docker apt-get update 首先安装依赖 apt-g…...

Linux多线程【线程互斥】

文章目录 Linux线程互斥进程线程间的互斥相关背景概念互斥量mutex模拟抢票代码 互斥量的接口初始化互斥量销毁互斥量互斥量加锁和解锁改进模拟抢票代码(加锁)小结对锁封装 lockGuard.hpp 互斥量实现原理探究可重入VS线程安全概念常见的线程不安全的情况常…...

os实训课程模拟考试(大题复习)

目录 一、Linux操作系统 (1)第1关:Linux初体验 (2)第2关:Linux常用命令 (3)第3关:Linux 查询命令帮助语句 二、Linux之进程管理—(重点) &…...

QT/QML国际化:中英文界面切换显示(cmake方式使用)

目录 前言 实现步骤 1. 准备翻译文件 2. 翻译字符串 3.设置应用程序语言 cmake 构建方式 示例代码 总结 1. 使用 file(GLOB ...) 2. 引入其他资源文件 再次生成翻译文件 5. 手动更新和生成.qm文件 其他资源 前言 在当今全球化的软件开发环境中,应用程…...

设计模式在Java项目中的实际应用

设计模式在Java项目中的实际应用 大家好,我是免费搭建查券返利机器人省钱赚佣金就用微赚淘客系统3.0的小编,也是冬天不穿秋裤,天冷也要风度的程序猿! 引言 设计模式是软件开发中重要的思想工具,它提供了解决特定问题…...

js制作随机四位数验证码图片

<div class"lable lable2"><div class"l"><span>*</span>验证码</div><div class"r"><input type"number" name"vercode" placeholder"请输入验证码"></div>&l…...

[开源软件] 支持链接汇总

“Common rules: 1- If the repo is on github, the support/bug link is also on the github with issues”" label; 2- Could ask questions by email list;" 3rd party software support link Note gcc https://gcc.gnu.org openssh https://bugzilla.mindrot.o…...

从零开始搭建spring boot多模块项目

一、搭建父级模块 1、打开idea,选择file–new–project 2、选择Spring Initializr,选择相关java版本,点击“Next” 3、填写父级模块信息 选择/填写group、artifact、type、language、packaging(后面需要修改)、java version(后面需要修改成和第2步中版本一致)。点击“…...

Iot解决方案开发的体系结构模式和技术

前言 Foreword 计算机技术起源于20世纪40年代&#xff0c;最初专注于数学问题的基本原理&#xff1b;到了60年代和70年代&#xff0c;它以符号系统为中心&#xff0c;该领域首先开始面临复杂性问题&#xff1b;到80年代&#xff0c;随着个人计算的兴起和人机交互的问题&#x…...

02.C1W1.Sentiment Analysis with Logistic Regression

目录 Supervised ML and Sentiment AnalysisSupervised ML (training)Sentiment analysis Vocabulary and Feature ExtractionVocabularyFeature extractionSparse representations and some of their issues Negative and Positive FrequenciesFeature extraction with freque…...

Stable Diffusion秋叶AnimateDiff与TemporalKit插件冲突解决

文章目录 Stable Diffusion秋叶AnimateDiff与TemporalKit插件冲突解决描述错误描述&#xff1a;找不到模块imageio.v3解决&#xff1a;参考地址 其他文章推荐&#xff1a;专栏 &#xff1a; 人工智能基础知识点专栏&#xff1a;大语言模型LLM Stable Diffusion秋叶AnimateDiff与…...

PCL 渐进形态过滤器实现地面分割

点云地面分割 一、代码实现二、结果示例🙋 概述 渐进形态过滤器:采用先腐蚀后膨胀的运算过程,可以有效滤除场景中的建筑物、植被、车辆、行人以及交通附属设施,保留道路路面及路缘石点云。 一、代码实现 #include <iostream> #include <pcl/io/pcd_io.h> #in…...

第十四届蓝桥杯省赛C++B组E题【接龙数列】题解(AC)

需求分析 题目要求最少删掉多少个数后&#xff0c;使得数列变为接龙数列。 相当于题目要求求出数组中的最长接龙子序列。 题目分析 对于一个数能不能放到接龙数列中&#xff0c;只关系到这个数的第一位和最后一位&#xff0c;所以我们可以先对数组进行预处理&#xff0c;将…...

Ubuntu 20.04.4 LTS 离线安装docker 与docker-compose

Ubuntu 20.04.4 LTS 离线安装docker 与docker-compose 要在Ubuntu 20.04.4 LTS上离线安装Docker和Docker Compose&#xff0c;你需要首先从有网络的环境下载Docker和Docker Compose的安装包&#xff0c;然后将它们传输到离线的服务器上进行安装。 在有网络的环境中&#xff1a…...

vue3+ts 写echarts 中国地图

需要引入二次封装的echarts和在ts文件写的option <template><div class"contentPage"><myEcharts :options"chartOptions" class"myEcharts" id"myEchartsMapId" ref"mapEcharts" /></di…...

【设计模式】【行为型模式】【责任链模式】

系列文章目录 可跳转到下面链接查看下表所有内容https://blog.csdn.net/handsomethefirst/article/details/138226266?spm1001.2014.3001.5501文章浏览阅读2次。系列文章大全https://blog.csdn.net/handsomethefirst/article/details/138226266?spm1001.2014.3001.5501 目录…...

超越所有SOTA达11%!媲美全监督方法 | UC伯克利开源UnSAM

文章链接&#xff1a;https://arxiv.org/pdf/2406.20081 github链接&#xff1a;https://github.com/frank-xwang/UnSAM SAM 代表了计算机视觉领域&#xff0c;特别是图像分割领域的重大进步。对于需要详细分析和理解复杂视觉场景(如自动驾驶、医学成像和环境监控)的应用特别有…...

享元模式(设计模式)

享元模式&#xff08;Flyweight Pattern&#xff09;是一种结构型设计模式&#xff0c;它通过共享细粒度对象来减少内存使用&#xff0c;从而提高性能。在享元模式中&#xff0c;多个对象可以共享相同的状态以减少内存消耗&#xff0c;特别适合用于大量相似对象的场景。 享元模…...

【机器学习】大模型训练的深入探讨——Fine-tuning技术阐述与Dify平台介绍

目录 引言 Fine-tuning技术的原理阐 预训练模型 迁移学习 模型初始化 模型微调 超参数调整 任务设计 数学模型公式 Dify平台介绍 Dify部署 创建AI 接入大模型api 选择知识库 个人主页链接&#xff1a;东洛的克莱斯韦克-CSDN博客 引言 Fine-tuning技术允许用户根…...

[特殊字符] 智能合约中的数据是如何在区块链中保持一致的?

&#x1f9e0; 智能合约中的数据是如何在区块链中保持一致的&#xff1f; 为什么所有区块链节点都能得出相同结果&#xff1f;合约调用这么复杂&#xff0c;状态真能保持一致吗&#xff1f;本篇带你从底层视角理解“状态一致性”的真相。 一、智能合约的数据存储在哪里&#xf…...

基于距离变化能量开销动态调整的WSN低功耗拓扑控制开销算法matlab仿真

目录 1.程序功能描述 2.测试软件版本以及运行结果展示 3.核心程序 4.算法仿真参数 5.算法理论概述 6.参考文献 7.完整程序 1.程序功能描述 通过动态调整节点通信的能量开销&#xff0c;平衡网络负载&#xff0c;延长WSN生命周期。具体通过建立基于距离的能量消耗模型&am…...

前端倒计时误差!

提示:记录工作中遇到的需求及解决办法 文章目录 前言一、误差从何而来?二、五大解决方案1. 动态校准法(基础版)2. Web Worker 计时3. 服务器时间同步4. Performance API 高精度计时5. 页面可见性API优化三、生产环境最佳实践四、终极解决方案架构前言 前几天听说公司某个项…...

最新SpringBoot+SpringCloud+Nacos微服务框架分享

文章目录 前言一、服务规划二、架构核心1.cloud的pom2.gateway的异常handler3.gateway的filter4、admin的pom5、admin的登录核心 三、code-helper分享总结 前言 最近有个活蛮赶的&#xff0c;根据Excel列的需求预估的工时直接打骨折&#xff0c;不要问我为什么&#xff0c;主要…...

Qwen3-Embedding-0.6B深度解析:多语言语义检索的轻量级利器

第一章 引言&#xff1a;语义表示的新时代挑战与Qwen3的破局之路 1.1 文本嵌入的核心价值与技术演进 在人工智能领域&#xff0c;文本嵌入技术如同连接自然语言与机器理解的“神经突触”——它将人类语言转化为计算机可计算的语义向量&#xff0c;支撑着搜索引擎、推荐系统、…...

实现弹窗随键盘上移居中

实现弹窗随键盘上移的核心思路 在Android中&#xff0c;可以通过监听键盘的显示和隐藏事件&#xff0c;动态调整弹窗的位置。关键点在于获取键盘高度&#xff0c;并计算剩余屏幕空间以重新定位弹窗。 // 在Activity或Fragment中设置键盘监听 val rootView findViewById<V…...

初学 pytest 记录

安装 pip install pytest用例可以是函数也可以是类中的方法 def test_func():print()class TestAdd: # def __init__(self): 在 pytest 中不可以使用__init__方法 # self.cc 12345 pytest.mark.api def test_str(self):res add(1, 2)assert res 12def test_int(self):r…...

Fabric V2.5 通用溯源系统——增加图片上传与下载功能

fabric-trace项目在发布一年后,部署量已突破1000次,为支持更多场景,现新增支持图片信息上链,本文对图片上传、下载功能代码进行梳理,包含智能合约、后端、前端部分。 一、智能合约修改 为了增加图片信息上链溯源,需要对底层数据结构进行修改,在此对智能合约中的农产品数…...

Python Ovito统计金刚石结构数量

大家好,我是小马老师。 本文介绍python ovito方法统计金刚石结构的方法。 Ovito Identify diamond structure命令可以识别和统计金刚石结构,但是无法直接输出结构的变化情况。 本文使用python调用ovito包的方法,可以持续统计各步的金刚石结构,具体代码如下: from ovito…...

C++课设:简易日历程序(支持传统节假日 + 二十四节气 + 个人纪念日管理)

名人说:路漫漫其修远兮,吾将上下而求索。—— 屈原《离骚》 创作者:Code_流苏(CSDN)(一个喜欢古诗词和编程的Coder😊) 专栏介绍:《编程项目实战》 目录 一、为什么要开发一个日历程序?1. 深入理解时间算法2. 练习面向对象设计3. 学习数据结构应用二、核心算法深度解析…...