【前端】HTML+CSS复习记录【5】
文章目录
- 前言
- 一、padding、margin、border(边框边距)
- 二、样式优先级
- 三、var(使用 CSS 变量更改多个元素样式)
- 四、media quary(媒体查询)
- 系列文章目录
前言
长时间未使用HTML编程,前端知识感觉忘得差不多了。通过梳理知识点,重新学习和巩固前段相关知识。
学习位置:W3CSchool:HTML + CSS 基础实战
一、padding、margin、border(边框边距)
- padding(内边距) margin(外边距) border(边框),均可单边设置,可如下描写。
- 这四个值按顺时针排序:上,右,下,左,并且设置的效果等同于特定声明每一个方向的padding。
border属性不会继承到子元素中

padding控制着元素内容与border之间的空隙大小。

margin(外边距)属性控制元素的边框与其他元素之间的距离。margin为正值时,元素大小不变,外部元素大小变化。值越大,离外部元素距离越大。margin为负值时,元素大小会根据值的绝对值大小变化,外部元素大小不变,可被内部元素覆盖。

二、样式优先级
- CSS 优先规则1: 最近的祖先样式比其他祖先样式优先级高。
- CSS 优先规则2:"直接样式"比"祖先样式"优先级高。
- CSS优先规则3:优先级关系:
内联样式 > ID 选择器 > 类选择器 = 属性选择器 = 伪类选择器 > 标签选择器 = 伪元素选择器。(补充学习:CSS基础之伪类选择器) - CSS优先规则4:属性后插有 !important 的属性拥有最高优先级。
p {color: red !important;}
- CSS 优先规则5:第二个声明始终优于第一个声明。
- HTML 元素里应用的 class 的先后顺序无关紧要。但是,在
<style>标签里面声明的class顺序十分重要。第二个声明始终优于第一个声明。如果.blue-text在.pink-text的后面声明,所以.blue-text会覆盖.pink-text的样式。
三、var(使用 CSS 变量更改多个元素样式)
background:var(custom-property-name, value)
ustom-property-name 是必需的, 自定义属性的名称,必需以 -- 开头。value 可选,备用值,在自定义属性不存在或未生效的时候使用。
:root伪类选择器常常被用于定义全局的CSS变量或者设置全局的CSS样式
:root {--main-bg-color: coral;/*定义*/--main-txt-color: blue;--main-padding: 15px;
}#div1 {background-color: var(--main-bg-color);/*使用*/color: var(--main-txt-color);padding: var(--main-padding);
}#div2 {background-color: var(--main-bg-color);color: var(--main-txt-color);padding: var(--main-padding);
}
四、media quary(媒体查询)
媒体类型允许你指定文件将如何在不同媒体呈现。该文件可以以不同的方式显示在屏幕上,在纸张上,或听觉浏览器等等。CSS 变量可以简化媒体查询的方式。 当屏幕小于或大于媒体查询所设置的值,通过改变变量的值,那么应用了变量的元素样式都会得到响应修改。
:root {--rabbit-ear-shadow: pink;--rabbit-basecolor: gray;/*一般生效*/--rabbit-skincolor:whitesmoke;--rabbit-background:rgb(198, 250, 241);
}@media (max-width: 350px) {:root {--rabbit-basecolor:white; /*当宽度小于等于350px时,代替上面定义的变量生效*/}
}
系列文章目录
【前端】HTML+CSS复习记录【1】
【前端】HTML+CSS复习记录【2】
【前端】HTML+CSS复习记录【3】
【前端】HTML+CSS复习记录【4】
【前端】HTML+CSS复习记录【5】(本章)
相关文章:
【前端】HTML+CSS复习记录【5】
文章目录 前言一、padding、margin、border(边框边距)二、样式优先级三、var(使用 CSS 变量更改多个元素样式)四、media quary(媒体查询)系列文章目录 前言 长时间未使用HTML编程,前端知识感觉…...
三分钟看懂SMD封装与COB封装的差异
全彩LED显示屏领域中,COB封装于SMD封装是比较常见的两种封装方式,SMD封装产品主要有常规小间距以及室内、户外型产品,COB封装产品主要集中在小间距以及微间距系列产品中,今天跟随COB显示屏厂家中品瑞一起快速看懂SMD封装与COB封装…...
深入理解策略梯度算法
策略梯度(Policy Gradient)算法是强化学习中的一种重要方法,通过优化策略以获得最大回报。本文将详细介绍策略梯度算法的基本原理,推导其数学公式,并提供具体的例子来指导其实现。 策略梯度算法的基本概念 在强化学习…...
Unicode 和 UTF-8 以及它们之间的关系
通俗易懂的 Unicode 和 UTF-8 解释 Unicode 是什么? 想象一下,我们有一个巨大的图书馆,这个图书馆里有各种各样的书,每本书都有一个唯一的编号。Unicode 就像是这个图书馆的目录系统,它给世界上所有的字符࿰…...
【C++】多态详解
💗个人主页💗 ⭐个人专栏——C学习⭐ 💫点击关注🤩一起学习C语言💯💫 目录 一、多态概念 二、多态的定义及实现 1. 多态的构成条件 2. 虚函数 2.1 什么是虚函数 2.2 虚函数的重写 2.3 虚函数重写的两个…...
C#异常捕获
前言 在C#中,我们无法保证我们编写的程序没有一点bug,如果我们对于这些抛出异常的bug不进行任何的处理的话,那么我们的软件在抛出这些异常的时候就会崩溃,也就是软件闪退,并且这种闪退由于我们没有进行处理࿰…...
工业一体机根据软件应用需求灵活选配
在当今工业领域,数字化、智能化的发展趋势愈发明显,工业一体机作为关键的设备,其重要性日益凸显。而能够根据软件应用需求进行灵活选配的工业一体机,更是为企业提供了高效、定制化的解决方案。 一、工业一体机的全封闭无风扇散热功…...
centos7 mqtt服务mosquitto搭建记录
1、系统centos7.6,安装默认版本 yum install mosquitto 2、启动运行 systemctl start mosquitto 3、设置自启动 systemctl enable mosquitto 4、修改配置文件 vim /etc/mosquitto/mosquitto.conf 监听端口,默认为1883,需要修改删除前面…...
双阶段目标检测算法:精确与效率的博弈
双阶段目标检测算法:精确与效率的博弈 目标检测是计算机视觉领域的一个核心任务,它涉及在图像或视频中识别和定位多个对象。双阶段目标检测算法是一种特殊的目标检测方法,它通过两个阶段来提高检测的准确性。本文将详细介绍双阶段目标检测算…...
Python量化交易策略
策略详情 按照1分k线图;跳过9:30点1分k线图不计算 买入;监控市面的可转债;当某1分涨幅大于x涨幅,一直重复x次,选择买入,符合x设置的条件只选择成交额最大的可转债买入(x要自定义&…...
为什么我感觉 C 语言在 Linux 下执行效率比 Windows 快得多?
在开始前刚好我有一些资料,是我根据网友给的问题精心整理了一份「Linux的资料从专业入门到高级教程」, 点个关注在评论区回复“888”之后私信回复“888”,全部无偿共享给大家!!!Windows的终端或者叫控制台…...
算法导论 总结索引 | 第四部分 第十六章:贪心算法
1、求解最优化问题的算法 通常需要经过一系列的步骤,在每个步骤都面临多种选择。对于许多最优化问题,使用动态规划算法求最优解有些杀鸡用牛刀了,可以使用更简单、更高效的算法 贪心算法(greedy algorithm)就是这样的算…...
用“文心一言”写的文章,看看AI写得怎么样?
零售连锁店的“支付结算”业务设计 在数字化浪潮的推动下,连锁店零售支付结算的设计愈发重要。一个优秀的支付结算设计不仅能够提升用户体验,还能增强品牌竞争力,进而促进销售增长。 本文将围绕一个具体的连锁店零售支付结算案例…...
企业消费采购成本和员工体验如何实现“鱼和熊掌“的兼得?
有企业说企业消费采购成本和员工体验的关系好比是“鱼和熊掌”,无法兼得? 要想控制好成本就一定要加强管控,但是加强管控以后,就会很难让员工获得满意的体验度。如果不加以管控,员工自由度增加了,往往就很难…...
发表EI论文相当于SCI几区?
EI(工程索引)本身并不进行分区,它是一个收录工程领域高质量文献的数据库,与SCI(科学引文索引)的分区制度不同。然而,在非正式的学术评价中,有时人们会将EI与SCI的分区进行比较。 虽…...
STFT短时傅里叶变换MTLAB简析
代码: 解释: 如果信号x有Nx个时间样本,短时傅里叶变换的结果矩阵s有k列; k的计算方式如图所示,M是窗函数的长度,L是重叠长度。 此符号是向下取整符号。 短时傅里叶变换的结果矩阵s的行数与参数‘FFTLength’…...
海致科技实施实习生面试
一、面试内容 注:此次是电话面试 1.是XX先生吗 2.你是有考虑转实施的吗? 3.请讲一下你对项目部署实施的理解和掌握 4.用过数据库,会编写SQL语句吗? 5.讲一下SQL的常用关键字 6.了解SQL中的函数吗?谈谈函数 7.多…...
论文阅读之旋转目标检测ARC:《Adaptive Rotated Convolution for Rotated Object Detection》
论文link:link code:code ARC是一个改进的backbone,相比于ResNet,最后的几层有一些改变。 Introduction ARC自适应地旋转以调整每个输入的条件参数,其中旋转角度由路由函数以数据相关的方式预测。此外,还采…...
面向对象(Java)
构造方法只能在对象实例化的时候调用 this可以作为方法参数,表示调用方法的当前对象 this可以作为方法返回值,表示返回当前对象 封装 通过方法访问数据,隐藏类的实现细节 static:类对象共享,类加载时产生,…...
I/O多路复用
参考面试官:简单说一下阻塞IO、非阻塞IO、IO复用的区别 ?_unix环境编程 阻塞io和非阻塞io-CSDN博客 同步阻塞(BIO) BIO 以流的方式处理数据 应用程序发起一个系统调用(recvform),这个时候应用程序会一直阻塞下去&am…...
synchronized 学习
学习源: https://www.bilibili.com/video/BV1aJ411V763?spm_id_from333.788.videopod.episodes&vd_source32e1c41a9370911ab06d12fbc36c4ebc 1.应用场景 不超卖,也要考虑性能问题(场景) 2.常见面试问题: sync出…...
ssc377d修改flash分区大小
1、flash的分区默认分配16M、 / # df -h Filesystem Size Used Available Use% Mounted on /dev/root 1.9M 1.9M 0 100% / /dev/mtdblock4 3.0M...
从深圳崛起的“机器之眼”:赴港乐动机器人的万亿赛道赶考路
进入2025年以来,尽管围绕人形机器人、具身智能等机器人赛道的质疑声不断,但全球市场热度依然高涨,入局者持续增加。 以国内市场为例,天眼查专业版数据显示,截至5月底,我国现存在业、存续状态的机器人相关企…...
涂鸦T5AI手搓语音、emoji、otto机器人从入门到实战
“🤖手搓TuyaAI语音指令 😍秒变表情包大师,让萌系Otto机器人🔥玩出智能新花样!开整!” 🤖 Otto机器人 → 直接点明主体 手搓TuyaAI语音 → 强调 自主编程/自定义 语音控制(TuyaAI…...
分布式增量爬虫实现方案
之前我们在讨论的是分布式爬虫如何实现增量爬取。增量爬虫的目标是只爬取新产生或发生变化的页面,避免重复抓取,以节省资源和时间。 在分布式环境下,增量爬虫的实现需要考虑多个爬虫节点之间的协调和去重。 另一种思路:将增量判…...
七、数据库的完整性
七、数据库的完整性 主要内容 7.1 数据库的完整性概述 7.2 实体完整性 7.3 参照完整性 7.4 用户定义的完整性 7.5 触发器 7.6 SQL Server中数据库完整性的实现 7.7 小结 7.1 数据库的完整性概述 数据库完整性的含义 正确性 指数据的合法性 有效性 指数据是否属于所定…...
华为OD机考-机房布局
import java.util.*;public class DemoTest5 {public static void main(String[] args) {Scanner in new Scanner(System.in);// 注意 hasNext 和 hasNextLine 的区别while (in.hasNextLine()) { // 注意 while 处理多个 caseSystem.out.println(solve(in.nextLine()));}}priv…...
打手机检测算法AI智能分析网关V4守护公共/工业/医疗等多场景安全应用
一、方案背景 在现代生产与生活场景中,如工厂高危作业区、医院手术室、公共场景等,人员违规打手机的行为潜藏着巨大风险。传统依靠人工巡查的监管方式,存在效率低、覆盖面不足、判断主观性强等问题,难以满足对人员打手机行为精…...
安卓基础(Java 和 Gradle 版本)
1. 设置项目的 JDK 版本 方法1:通过 Project Structure File → Project Structure... (或按 CtrlAltShiftS) 左侧选择 SDK Location 在 Gradle Settings 部分,设置 Gradle JDK 方法2:通过 Settings File → Settings... (或 CtrlAltS)…...
MLP实战二:MLP 实现图像数字多分类
任务 实战(二):MLP 实现图像多分类 基于 mnist 数据集,建立 mlp 模型,实现 0-9 数字的十分类 task: 1、实现 mnist 数据载入,可视化图形数字; 2、完成数据预处理:图像数据维度转换与…...
