当前位置: 首页 > news >正文

【Matlab 路径优化】基于蚁群算法的XX市旅游景点线路优化系统

基于蚁群算法的XX市旅游景点线路优化系统

(一)客户需求:

①考虑旅游景点的空间分布、游客偏好等因素,实现了旅游线路的智能规划

②游客选择一景点出发经过所要游览的所有景点只一次,最后回到出发点的前提下,要求所走路程最少。

③界面:展示路径,有景点显示,描述一下路径规划

(二)景点数据:

关林(关羽之墓) 112.48,34.61
洛邑古城 112.49,34.68
应天门 116.35,39.88
隋唐遗址植物园 112.45,34.64
白马寺 112.61,34.72
王城公园 112.42,34.67
龙门石窟 112.48,34.56

(三) 蚁群算法

蚁群算法是一种模拟蚁群觅食行为的优化算法,通过模拟蚂蚁在寻找食物时的行为来解决优化问题。

蚁群算法的基本原理是,蚂蚁会通过释放信息素来与其他蚂蚁进行信息交流。在寻找食物的过程中,当一只蚂蚁找到了食物后,会回到巢穴并释放一种称为信息素的化学物质。而其他蚂蚁在移动时会通过感知到这些信息素的浓度来判断哪条路径是更适合寻找食物的。随着时间的推移,蚂蚁会逐渐增加对路径上信息素的释放,从而引导其他蚂蚁选择更短路径。

蚁群算法的优点是能够在复杂的问题中找到较好的解决方案,并且具有较好的鲁棒性和适应性。它的应用领域广泛,包括路线规划、资源分配、组合优化等。

蚁群算法的步骤如下:

  1. 初始化蚂蚁的位置和信息素浓度。
  2. 蚂蚁按照一定的规则选择下一个移动的位置。
  3. 蚂蚁在移动过程中更新信息素浓度。
  4. 重复步骤2和3,直到找到满意的解决方案或达到迭代次数。
  5. 通过更新信息素浓度来优化路径选择的过程。

蚁群算法的关键在于信息素的更新和蚂蚁移动规则的设计。合适的信息素更新策略可以增强蚂蚁选择更好路径的能力,而适当的蚂蚁移动规则可以使蚂蚁能够在搜索空间中进行探索和利用的平衡。

代码实现

主函数

clc
close all
clear all%%
namelist={'关林(关羽之墓)''洛邑古城''应天门''隋唐遗址植物园''白马寺''王城公园''龙门石窟'};pos=[112.48,34.61112.49,34.68112.467302,34.682326112.45,34.64112.61,34.72112.42,34.67112.48,34.56];
%%
s="请输入起点:\n 1 关林(关羽之墓)\n 2 洛邑古城\n 3 应天门\n 4 隋唐遗址植物园\n 5 白马寺\n 6 王城公园\n 7 龙门石窟\n";startid=input(s);fprintf('已选择起点: %s',namelist{startid})N=numel(pos)/2;
figure
geoscatter(pos(:,2),pos(:,1),200,'gp','filled')hold on
for n=1:Ntext(pos(n,2)+0.005,pos(n,1),namelist{n})
end%% 计算距离矩阵
D=zeros(N);
for i=1:Nfor j=i+1:ND(i,j)=SphereDist([pos(i,2),pos(i,1)],[pos(j,2),pos(j,1)]);D(j,i)=D(i,j);end
end
route=myACO(D,startid);lat = [pos(route,2)' pos(startid,2)'];
lon = [pos(route,1)' pos(startid,1)'];
geoplot(lat,lon,"--b","LineWidth",2)text(pos(startid,2)-0.005,pos(startid,1),'起点')
geoscatter(pos(startid,2),pos(startid,1),150,'ro','filled')

蚁群算法

function bestroute=myACO(D,startid)n=size(D,1);
%% 初始化参数
m = 50;                              % 蚂蚁数量
alpha = 1;                           % 信息素重要程度因子
beta = 5;                            % 启发函数重要程度因子
rho = 0.1;                           % 信息素挥发因子
Q = 1;                               % 常系数
Eta = 1./D;                          % 启发函数
Tau = ones(n,n);                     % 信息素矩阵
Table = zeros(m,n);                  % 路径记录表
iter = 1;                            % 迭代次数初值
iter_max = 200;                      % 最大迭代次数 
Route_best = zeros(iter_max,n);      % 各代最佳路径       
Length_best = zeros(iter_max,1);     % 各代最佳路径的长度  
Length_ave = zeros(iter_max,1);      % 各代路径的平均长度  %% 迭代寻找最佳路径
while iter <= iter_max% 随机产生各个蚂蚁的起点城市start = startid*ones(m,1);% for i = 1:m% temp = randperm(n);% start(i) = temp(1);% endTable(:,1) = start; % 构建解空间citys_index = 1:n;% 逐个蚂蚁路径选择for i = 1:m% 逐个城市路径选择for j = 2:ntabu = Table(i,1:(j - 1));           % 已访问的城市集合(禁忌表)allow_index = ~ismember(citys_index,tabu);allow = citys_index(allow_index);  % 待访问的城市集合P = allow;% 计算城市间转移概率for k = 1:length(allow)P(k) = Tau(tabu(end),allow(k))^alpha * Eta(tabu(end),allow(k))^beta;endP = P/sum(P);% 轮盘赌法选择下一个访问城市Pc = cumsum(P);     target_index = find(Pc >= rand); target = allow(target_index(1));Table(i,j) = target;endend% 计算各个蚂蚁的路径距离Length = zeros(m,1);for i = 1:mRoute = Table(i,:);for j = 1:(n - 1)Length(i) = Length(i) + D(Route(j),Route(j + 1));endLength(i) = Length(i) + D(Route(n),Route(1));end% 计算最短路径距离及平均距离if iter == 1[min_Length,min_index] = min(Length);Length_best(iter) = min_Length;  Length_ave(iter) = mean(Length);Route_best(iter,:) = Table(min_index,:);else[min_Length,min_index] = min(Length);Length_best(iter) = min(Length_best(iter - 1),min_Length);Length_ave(iter) = mean(Length);if Length_best(iter) == min_LengthRoute_best(iter,:) = Table(min_index,:);elseRoute_best(iter,:) = Route_best((iter-1),:);endend% 更新信息素Delta_Tau = zeros(n,n);% 逐个蚂蚁计算for i = 1:m% 逐个城市计算for j = 1:(n - 1)Delta_Tau(Table(i,j),Table(i,j+1)) = Delta_Tau(Table(i,j),Table(i,j+1)) + Q/Length(i);endDelta_Tau(Table(i,n),Table(i,1)) = Delta_Tau(Table(i,n),Table(i,1)) + Q/Length(i);endTau = (1-rho) * Tau + Delta_Tau;% 迭代次数加1,清空路径记录表iter = iter + 1;Table = zeros(m,n);
end
bestroute=Route_best(end,:);

结果演示

脚本版:

在这里插入图片描述
GUI版本:
在这里插入图片描述

(五)完整项目分享

提供完整项目分享和项目定制,欢迎咨询

相关文章:

【Matlab 路径优化】基于蚁群算法的XX市旅游景点线路优化系统

基于蚁群算法的XX市旅游景点线路优化系统 &#xff08;一&#xff09;客户需求&#xff1a; ①考虑旅游景点的空间分布、游客偏好等因素&#xff0c;实现了旅游线路的智能规划 ②游客选择一景点出发经过所要游览的所有景点只一次&#xff0c;最后回到出发点的前提下&#xf…...

我关于Excel使用点滴的笔记

本篇笔记是我关于Excel使用点滴的学习笔记&#xff0c;摘要和地址链接列表。临时暂挂&#xff0c;后面可能在不需要时删除。 (笔记模板由python脚本于2024年06月28日 12:23:32创建&#xff0c;本篇笔记适合初通Python&#xff0c;熟悉六大基本数据(str字符串、int整型、float浮…...

【Java安装】windows10+JDK21+IDEA

文章目录 一、JDK安装1. 下载完成后按照自己需要的位置安装2. 配置环境变量2.1 JAVA_HOME变量2.2 PATH配置 3. 验证4. helloworld 二、IDEA安装三、IDEA-HelloWorld 一、JDK安装 JDK安装链接 1. 下载完成后按照自己需要的位置安装 2. 配置环境变量 2.1 JAVA_HOME变量 安装…...

《简历宝典》01 - 一文带你学会如何写一份糟糕透顶的简历

我们每个人几乎都会面对找工作这件事&#xff0c;而找工作或者说求职首先就是要写一份简历。今天狗哥将以一个不同的视角带你写一份无与伦比&#xff0c;糟糕透顶的求职简历&#xff0c;说实话&#xff0c;其实几年前&#xff0c;我就是这么写的。 目录 1. 文件名 2. 基本信…...

多链路聚合通信路由在应急救援活动中的重要性及解决方案

在应急救援指挥活动中&#xff0c;多链路聚合通信设备如同一座坚固的桥梁&#xff0c;将信息快速、准确地传递至每一个角落。面对复杂多变的救援现场&#xff0c;这类设备展现了其卓越的适应性和稳定性。 想象一下&#xff0c;当灾害突然降临&#xff0c;信息的传递变得至关重…...

PyCharm中如何将某个文件设置为默认运行文件

之前在使用JetBrain公司的另一款软件IDEA的时候&#xff0c;如果在选中static main函数后按键altenter可以默认以后运行Main类的main函数。最近在使用PyCharm学习Python&#xff0c;既然同为一家公司的产品而且二者的风格如此之像&#xff0c;所以我怀疑PyCharm中肯定也有类似的…...

【杂交版】植物大战僵尸杂交版v2.1最新版本下载链接

B站游戏作者潜艇伟伟迷于6月13日中午更新了植物大战僵尸杂交版2.1版本&#xff0c;有老版本的也可以完美继承存档数据。 不多废话下载链接放上&#xff1a; 夸克网盘链接&#xff1a;https://pan.quark.cn/s/095de551d1d1 UC网盘链接&#xff1a;https://drive.uc.cn/s/86debb3…...

图像增强及运算篇之图像掩膜直方图和HS直方图

一.图像掩膜直方图 如果要统计图像的某一部分直方图&#xff0c;就需要使用掩码&#xff08;蒙板&#xff09;来进行计算。假设将要统计的部分设置为白色&#xff0c;其余部分设置为黑色&#xff0c;然后使用该掩膜进行直方图绘制&#xff0c;其完整代码如下所示。 # -*- codi…...

Python商务数据分析知识专栏(六)——Python数据分析的应用④Python数据分析实训

Python商务数据分析知识专栏&#xff08;六&#xff09;——Python数据分析的应用④Python数据分析实训 Python数据分析实训一.iris数据处理实训1.1 拓展学习资料&Python环境介绍1.2 读取数据&修改列名称1.3 以PythonConsole方式执行代码1.4 缺失值处理1.5 重置索引 二…...

【Python机器学习】处理文本数据——将文本数据表示为词袋

用于机器学习的文本有一种最简单的方法&#xff0c;也是最有效且最常用的方法&#xff0c;就是使用词袋表示。使用这种表示方法时&#xff0c;我们舍弃了输入文本中的大部分结构&#xff0c;比如章节、段落、句子和格式&#xff0c;只计算语料库中&#xff0c;只计算语料库中每…...

论文写作全攻略:Kimi辅助下的高效学术写作技巧

学境思源&#xff0c;一键生成论文初稿&#xff1a; AcademicIdeas - 学境思源AI论文写作 完成论文写作是一个多阶段的过程&#xff0c;涉及到不同的任务和技能。以下是按不同分类总结的向Kimi提问的prompt&#xff0c;以帮助你在论文写作过程中取得成功&#xff1a; 1. 选题与…...

通证经济重塑经济格局

在数字化转型的全球浪潮中&#xff0c;通证经济模式犹如一股新兴力量&#xff0c;以其独特的价值传递与共享机制&#xff0c;重塑着经济格局&#xff0c;引领我们步入数字经济的新纪元。 通证&#xff0c;作为这一模式的核心&#xff0c;不仅是权利与权益的数字化凭证&#xf…...

linux - cp 命令

问&#xff1a;cp -r ./src/. ./dst 与 cp -r ./src/* ./dst 有什么区别? 1.隐藏文件和目录&#xff1a;cp -r ./src/* ./dst 不会复制隐藏文件和目录。cp -r ./src/. ./dst 会复制所有文件和目录&#xff0c;包括隐藏文件和目录。 2.通配符和当前目录&#xff1a;* 是一个通…...

基于Qt实现的PDF阅读、编辑工具

记录一下实现pdf工具功能 语言&#xff1a;c、qt IDE&#xff1a;vs2017 环境&#xff1a;win10 一、功能演示&#xff1a; 二、功能介绍&#xff1a; 1.基于saribbon主体界面框架&#xff0c;该框架主要是为了实现类似word导航项 2.加载PDF放大缩小以及预览功能 3.pdf页面跳转…...

Linux 内核 GPIO 用户空间接口

文章目录 Linux 内核 GPIO 接口旧版本方式&#xff1a;sysfs 接口新版本方式&#xff1a;chardev 接口 gpiod 库及其命令行gpiod 库的命令行gpiod 库函数的应用 GPIO&#xff08;General Purpose Input/Output&#xff0c;通用输入/输出接口&#xff09;&#xff0c;是微控制器…...

Hive数据倾斜--处理方法

1. 什么是数据倾斜&#xff1f; 在分布式计算场景下&#xff0c;大量的数据集中在某一个节点而导致一个任务的执行时间变长。而大量的节点只处理了小部分的数据&#xff0c;大数据组件处理海量数据的特点就是不患多&#xff0c;而患不均。 2. 怎么发现任务出现了数据倾斜现象 …...

k8s流控平台apiserver详解

一、简单理解认识apiserver 1.主要功能 认证 鉴权 准入 mutating validating admission 限流 2.概念 apiserver保护etcd&#xff0c;缓存机制&#xff0c;有缓存直接返回&#xff0c;没缓存再去查看etcd,apiserver是担任和其他平台同信并认证 3.访问控制概览…...

unity对于文件夹的操作

1、获取目标文件夹内所有文件夹 string[] directories Directory.GetDirectories(Path);for (int i 0; i < directories.Length; i){print(directories[i]);}2、获取目标文件夹内指定文件 public List<string> GetAllTxt(string path){//只获取文件名string[] files…...

[Redis]哨兵机制

哨兵机制概念 在传统主从复制机制中&#xff0c;会存在一些问题&#xff1a; 1. 主节点发生故障时&#xff0c;进行主备切换的过程是复杂的&#xff0c;需要人工参与&#xff0c;导致故障恢复时间无法保障。 2. 主节点可以将读压力分散出去&#xff0c;但写压力/存储压力是无法…...

Vue3--Watch、Watcheffect、Computed的使用和区别

Vue3–Watch、Watcheffect、Computed的使用和区别 一、watch 1.功能 watch 用于监听响应式数据的变化&#xff0c;并在数据变化时执行特定的回调函数。适合在响应式数据变化时执行异步操作或复杂逻辑。 2.主要特点 指定数据监听&#xff1a;可以精确地监听一个或多个响应式…...

网络编程(Modbus进阶)

思维导图 Modbus RTU&#xff08;先学一点理论&#xff09; 概念 Modbus RTU 是工业自动化领域 最广泛应用的串行通信协议&#xff0c;由 Modicon 公司&#xff08;现施耐德电气&#xff09;于 1979 年推出。它以 高效率、强健性、易实现的特点成为工业控制系统的通信标准。 包…...

Lombok 的 @Data 注解失效,未生成 getter/setter 方法引发的HTTP 406 错误

HTTP 状态码 406 (Not Acceptable) 和 500 (Internal Server Error) 是两类完全不同的错误&#xff0c;它们的含义、原因和解决方法都有显著区别。以下是详细对比&#xff1a; 1. HTTP 406 (Not Acceptable) 含义&#xff1a; 客户端请求的内容类型与服务器支持的内容类型不匹…...

Spring Boot面试题精选汇总

&#x1f91f;致敬读者 &#x1f7e9;感谢阅读&#x1f7e6;笑口常开&#x1f7ea;生日快乐⬛早点睡觉 &#x1f4d8;博主相关 &#x1f7e7;博主信息&#x1f7e8;博客首页&#x1f7eb;专栏推荐&#x1f7e5;活动信息 文章目录 Spring Boot面试题精选汇总⚙️ **一、核心概…...

智能AI电话机器人系统的识别能力现状与发展水平

一、引言 随着人工智能技术的飞速发展&#xff0c;AI电话机器人系统已经从简单的自动应答工具演变为具备复杂交互能力的智能助手。这类系统结合了语音识别、自然语言处理、情感计算和机器学习等多项前沿技术&#xff0c;在客户服务、营销推广、信息查询等领域发挥着越来越重要…...

多模态图像修复系统:基于深度学习的图片修复实现

多模态图像修复系统:基于深度学习的图片修复实现 1. 系统概述 本系统使用多模态大模型(Stable Diffusion Inpainting)实现图像修复功能,结合文本描述和图片输入,对指定区域进行内容修复。系统包含完整的数据处理、模型训练、推理部署流程。 import torch import numpy …...

【LeetCode】3309. 连接二进制表示可形成的最大数值(递归|回溯|位运算)

LeetCode 3309. 连接二进制表示可形成的最大数值&#xff08;中等&#xff09; 题目描述解题思路Java代码 题目描述 题目链接&#xff1a;LeetCode 3309. 连接二进制表示可形成的最大数值&#xff08;中等&#xff09; 给你一个长度为 3 的整数数组 nums。 现以某种顺序 连接…...

探索Selenium:自动化测试的神奇钥匙

目录 一、Selenium 是什么1.1 定义与概念1.2 发展历程1.3 功能概述 二、Selenium 工作原理剖析2.1 架构组成2.2 工作流程2.3 通信机制 三、Selenium 的优势3.1 跨浏览器与平台支持3.2 丰富的语言支持3.3 强大的社区支持 四、Selenium 的应用场景4.1 Web 应用自动化测试4.2 数据…...

xmind转换为markdown

文章目录 解锁思维导图新姿势&#xff1a;将XMind转为结构化Markdown 一、认识Xmind结构二、核心转换流程详解1.解压XMind文件&#xff08;ZIP处理&#xff09;2.解析JSON数据结构3&#xff1a;递归转换树形结构4&#xff1a;Markdown层级生成逻辑 三、完整代码 解锁思维导图新…...

Windows电脑能装鸿蒙吗_Windows电脑体验鸿蒙电脑操作系统教程

鸿蒙电脑版操作系统来了&#xff0c;很多小伙伴想体验鸿蒙电脑版操作系统&#xff0c;可惜&#xff0c;鸿蒙系统并不支持你正在使用的传统的电脑来安装。不过可以通过可以使用华为官方提供的虚拟机&#xff0c;来体验大家心心念念的鸿蒙系统啦&#xff01;注意&#xff1a;虚拟…...

客户案例 | 短视频点播企业海外视频加速与成本优化:MediaPackage+Cloudfront 技术重构实践

01技术背景与业务挑战 某短视频点播企业深耕国内用户市场&#xff0c;但其后台应用系统部署于东南亚印尼 IDC 机房。 随着业务规模扩大&#xff0c;传统架构已较难满足当前企业发展的需求&#xff0c;企业面临着三重挑战&#xff1a; ① 业务&#xff1a;国内用户访问海外服…...