当前位置: 首页 > news >正文

Python爬取豆瓣电影+数据可视化,爬虫教程!

1. 爬取数据

1.1 导入以下模块

import os
import re
import time
import requests
from bs4 import BeautifulSoup
from fake_useragent import UserAgent
from openpyxl import Workbook, load_workbook

1.2 获取每页电影链接

def getonepagelist(url,headers):try:r = requests.get(url, headers=headers, timeout=10)r.raise_for_status()r.encoding = 'utf-8'soup = BeautifulSoup(r.text, 'html.parser')lsts = soup.find_all(attrs={'class': 'hd'})for lst in lsts:href = lst.a['href']time.sleep(0.5)getfilminfo(href, headers)except:print('getonepagelist error!')

1.3 获取每部电影具体信息

def getfilminfo(url,headers):filminfo = []r = requests.get(url, headers=headers, timeout=10)r.raise_for_status()r.encoding = 'utf-8'soup = BeautifulSoup(r.text, 'html.parser')

1.4 保存数据

def insert2excel(filepath,allinfo):try:if not os.path.exists(filepath):tableTitle = ['片名','上映年份','评分','评价人数','导演','编剧','主演','类型','国家/地区','语言','时长(分钟)']wb = Workbook()ws = wb.activews.title = 'sheet1'ws.append(tableTitle)wb.save(filepath)time.sleep(3)wb = load_workbook(filepath)ws = wb.activews.title = 'sheet1'ws.append(allinfo)wb.save(filepath)return Trueexcept:return False

2. 数据可视化

2.1 导入以下模块

import pandas as pd
from pyecharts import options as opts
from pyecharts.charts import Bar

2.2 用pandas模块读取数据

data = pd.read_excel('/home/mw/input/TOP2508837/TOP250.xlsx')
data.head(10)

2.3 各年份上映电影数量柱状图(纵向)

def getzoombar(data):year_counts = data['上映年份'].value_counts()year_counts.columns = ['上映年份', '数量']year_counts = year_counts.sort_index()c = (Bar().add_xaxis(list(year_counts.index)).add_yaxis('上映数量', year_counts.values.tolist()).set_global_opts(title_opts=opts.TitleOpts(title='各年份上映电影数量'),yaxis_opts=opts.AxisOpts(name='上映数量'),xaxis_opts=opts.AxisOpts(name='上映年份'),datazoom_opts=[opts.DataZoomOpts(), opts.DataZoomOpts(type_='inside')],))

2.4 各地区上映电影数量前十柱状图(横向)

def getcountrybar(data):country_counts = data['国家/地区'].value_counts()country_counts.columns = ['国家/地区', '数量']country_counts = country_counts.sort_values(ascending=True)c = (Bar().add_xaxis(list(country_counts.index)[-10:]).add_yaxis('地区上映数量', country_counts.values.tolist()[-10:]).reversal_axis().set_global_opts(title_opts=opts.TitleOpts(title='地区上映电影数量'),yaxis_opts=opts.AxisOpts(name='国家/地区'),xaxis_opts=opts.AxisOpts(name='上映数量'),).set_series_opts(label_opts=opts.LabelOpts(position="right")))

2.5 电影评价人数前二十柱状图(横向)

def getscorebar(data):df = data.sort_values(by='评价人数', ascending=True)c = (Bar().add_xaxis(df['片名'].values.tolist()[-20:]).add_yaxis('评价人数', df['评价人数'].values.tolist()[-20:]).reversal_axis().set_global_opts(title_opts=opts.TitleOpts(title='电影评价人数'),yaxis_opts=opts.AxisOpts(name='片名'),xaxis_opts=opts.AxisOpts(name='人数'),datazoom_opts=opts.DataZoomOpts(type_='inside'),).set_series_opts(label_opts=opts.LabelOpts(position="right")))

最后:如果你对Python感兴趣,想要学习Python,希望可以帮到你,一起加油!以上是给大家分享的Python全套学习资料,都是我自己学习时整理的: 

一、Python所有方向的学习路线

Python所有方向路线就是把Python常用的技术点做整理,形成各个领域的知识点汇总,它的用处就在于,你可以按照上面的知识点去找对应的学习资源,保证自己学得较为全面。

图片

图片

二、学习软件

工欲善其事必先利其器。学习Python常用的开发软件都在这里了,还有环境配置的教程,给大家节省了很多时间。

图片

三、全套PDF电子书

书籍的好处就在于权威和体系健全,刚开始学习的时候你可以只看视频或者听某个人讲课,但等你学完之后,你觉得你掌握了,这时候建议还是得去看一下书籍,看权威技术书籍也是每个程序员必经之路。

图片

四、入门学习视频全套

我们在看视频学习的时候,不能光动眼动脑不动手,比较科学的学习方法是在理解之后运用它们,这时候练手项目就很适合了。

图片

图片

五、实战案例

光学理论是没用的,要学会跟着一起敲,要动手实操,才能将自己的所学运用到实际当中去,这时候可以搞点实战案例来学习。

图片

图片

 **学习资源已打包,需要的小伙伴可以戳这里:【学习资料】 

相关文章:

Python爬取豆瓣电影+数据可视化,爬虫教程!

1. 爬取数据 1.1 导入以下模块 import os import re import time import requests from bs4 import BeautifulSoup from fake_useragent import UserAgent from openpyxl import Workbook, load_workbook1.2 获取每页电影链接 def getonepagelist(url,headers):try:r reque…...

初阶数据结构二叉树练习系列(1)

这个系列的文章将带大家一起刷题,并且总结思路 温馨提示:本篇文章里的练习题仅适合刚学完二叉树的小白使用 相同的树 思路 情况分析:第一种情况:两棵树都为空 → 返回true 第二种情况&am…...

【selenium 】操作元素

操作元素 元素操作鼠标操作键盘操作 元素操作 元素操作示例清空输入框clear()deiver.find_element_by_id(“username”).clear()输入文字send_keys()deiver.find_element_by_id(“username”).send_keys(‘zs’)元素点击 click()deiver.find_element_by_id(“login”).click()…...

【MySQL】事务实现原理

目录 事务 如何使用 ACID 原子性(Atomicity) 原子性实现原理 持久性(Durability) 持久性实现原理 隔离性 隔离级别 读未提交 读已提交 可重复读 串行化 隔离级别原理 锁 共享锁&独占锁 意向锁 索引记录锁 间隙锁 临键锁 插入意向锁 自增锁 MVCC 实现…...

面向物联网行业的异常监控追踪技术解决方案:技术革新与运维保障

在现代高度数字化和互联的环境中,物联网技术已经深入到我们生活的方方面面。特别是在家庭和工业环境中,物联网系列通讯作为连接各类设备的关键枢纽,其稳定性和可靠性显得尤为重要。本文将介绍一种创新的监控系统,旨在实时跟踪和分…...

守护厨房空气:全面排查与修复油烟净化器跳闸问题

我最近分析了餐饮市场的油烟净化器等产品报告,解决了餐饮业厨房油腻的难题,更加方便了在餐饮业和商业场所有需求的小伙伴们。 在繁忙的餐饮业厨房中,油烟净化器是确保空气清新和环境卫生的关键设备。然而,油烟净化器在长时间高强…...

【微服务网关——https与http2代理实现】

1.https与http2代理 1.1 重新认识https与http2 https是http安全版本http2是一种传输协议两者并没有本质联系 1.1.1 https与http的区别 HTTP(超文本传输协议)和 HTTPS(安全超文本传输协议)是用于在网络上交换数据的两种协议。H…...

mssql查询历史执行过的语句日志

SELECT deqs.creation_time,dest.text AS [SQL Text],deqs.execution_count,deqs.total_elapsed_time,deqs.total_worker_time FROM sys.dm_exec_query_stats AS deqs CROSS APPLY sys.dm_exec_sql_text(deqs.sql_handle) AS dest--where dest.text like %这个是我的条件&#…...

【LeetCode】每日一题:买卖股票的最佳时机 II

给你一个整数数组 prices ,其中 prices[i] 表示某支股票第 i 天的价格。 在每一天,你可以决定是否购买和/或出售股票。你在任何时候 最多 只能持有 一股 股票。你也可以先购买,然后在 同一天 出售。 返回 你能获得的 最大 利润 。 AC代码 水…...

【TS】TypeScript 联合类型详解:解锁更灵活的类型系统

🌈个人主页: 鑫宝Code 🔥热门专栏: 闲话杂谈| 炫酷HTML | JavaScript基础 ​💫个人格言: "如无必要,勿增实体" 文章目录 TypeScript 联合类型详解:解锁更灵活的类型系统一、联合类型的定义二…...

kali改回官方源后更新失败

官方源: deb http://http.kali.org/kali kali-rolling main non-free contrib deb-src http://http.kali.org/kali kali-rolling main non-free contrib在文件 /etc/cat/sources.list中将官方源修改为: deb http://http.kali.org/kali kali-rolling ma…...

Mysql 左关联(LEFT JOIN)

在左关联(LEFT JOIN)操作中,关于大表和小表的连接顺序,通常建议将小表放在前面,大表放在后面。这种安排方式有助于提高查询效率,原因如下: 扫描效率:在SQL查询中,尤其是…...

[笔记]小米CyberDog机器狗仿真调试记录

从官方github的所有源码库来看,所有的source命令只有两条,执行它以配置环境变量: source /opt/ros/galactic/setup.bash source /home/cyberdog_ws/install/setup.bash 如果运行脚本之后gazebo正常启动及机器狗模型在悬空状态,问…...

第十四届蓝桥杯省赛C++B组G题【子串简写】题解(AC)

题目大意 给定字符串 s s s,字符 a , b a, b a,b,问字符串 s s s 中有多少个 a a a 开头 b b b 结尾的子串。 解题思路 20pts 使用二重循环枚举左端点和右端点,判断是否为 a a a 开头 b b b 结尾的字符串,是则答案加一…...

实现Java Web应用的高性能负载均衡方案

实现Java Web应用的高性能负载均衡方案 大家好,我是微赚淘客系统3.0的小编,也是冬天不穿秋裤,天冷也要风度的程序猿! 在高并发的网络环境中,负载均衡是确保Web应用程序高性能和可靠性的关键策略之一。本文将探讨如何…...

医学预测模型web APP的制作建议

医学预测模型web APP的制作建议 医学预测模型类web APP定义为承载预测模型而便利预测模型临床应用的可视化客户端。 医学预测模型类web APP的功能是衔接预测模型和临床实践,让用户正确地,方便地使用预测模型并恰当地理解预测模型的结果,在此…...

gitlab每日备份以及restore

gitlab服务有非常简洁的每日备份命令, 从production的gitlab的每日备份中restore到backup环境也非常方便。 一、Production gitlab每日备份 1. Production gitlab环境上编写脚本 cat /root/gitlab_bak.shgitlab-rake gitlab:backup:create > /var/opt/gitl…...

2024-07-05 base SAS programming学习笔记9(variables)

1.在数据集增加累加变量值(SUM) 求和语句(SUM STATEMENT):variableexpression variable是累积求和的变量名,为数值型,默认初始值为0;该variable值则会保留到一个观测 当expression有缺失值,在求…...

kafka--发布-订阅消息系统

1. Kafka概述 1. kafka是什么 kafka是分布式的、高并发的、基于发布/订阅模式的消息队列软件系统。 kafka中的重要组件 Producer:消息生产者,发布消息到Kafka集群的终端或服务Consume:消费者,从Kafka集群中消费消息的终端或服…...

2024最新软件测试面试题。内附答案+文档

🍅 视频学习:文末有免费的配套视频可观看 🍅 点击文末小卡片,免费获取软件测试全套资料,资料在手,涨薪更快 1、你以前工作时的测试流程是什么? 参考答案:(灵活回答&…...

浅谈 React Hooks

React Hooks 是 React 16.8 引入的一组 API,用于在函数组件中使用 state 和其他 React 特性(例如生命周期方法、context 等)。Hooks 通过简洁的函数接口,解决了状态与 UI 的高度解耦,通过函数式编程范式实现更灵活 Rea…...

条件运算符

C中的三目运算符(也称条件运算符,英文:ternary operator)是一种简洁的条件选择语句,语法如下: 条件表达式 ? 表达式1 : 表达式2• 如果“条件表达式”为true,则整个表达式的结果为“表达式1”…...

定时器任务——若依源码分析

分析util包下面的工具类schedule utils: ScheduleUtils 是若依中用于与 Quartz 框架交互的工具类,封装了定时任务的 创建、更新、暂停、删除等核心逻辑。 createScheduleJob createScheduleJob 用于将任务注册到 Quartz,先构建任务的 JobD…...

【Web 进阶篇】优雅的接口设计:统一响应、全局异常处理与参数校验

系列回顾: 在上一篇中,我们成功地为应用集成了数据库,并使用 Spring Data JPA 实现了基本的 CRUD API。我们的应用现在能“记忆”数据了!但是,如果你仔细审视那些 API,会发现它们还很“粗糙”:有…...

七、数据库的完整性

七、数据库的完整性 主要内容 7.1 数据库的完整性概述 7.2 实体完整性 7.3 参照完整性 7.4 用户定义的完整性 7.5 触发器 7.6 SQL Server中数据库完整性的实现 7.7 小结 7.1 数据库的完整性概述 数据库完整性的含义 正确性 指数据的合法性 有效性 指数据是否属于所定…...

C++课设:简易日历程序(支持传统节假日 + 二十四节气 + 个人纪念日管理)

名人说:路漫漫其修远兮,吾将上下而求索。—— 屈原《离骚》 创作者:Code_流苏(CSDN)(一个喜欢古诗词和编程的Coder😊) 专栏介绍:《编程项目实战》 目录 一、为什么要开发一个日历程序?1. 深入理解时间算法2. 练习面向对象设计3. 学习数据结构应用二、核心算法深度解析…...

嵌入式常见 CPU 架构

架构类型架构厂商芯片厂商典型芯片特点与应用场景PICRISC (8/16 位)MicrochipMicrochipPIC16F877A、PIC18F4550简化指令集,单周期执行;低功耗、CIP 独立外设;用于家电、小电机控制、安防面板等嵌入式场景8051CISC (8 位)Intel(原始…...

规则与人性的天平——由高考迟到事件引发的思考

当那位身着校服的考生在考场关闭1分钟后狂奔而至,他涨红的脸上写满绝望。铁门内秒针划过的弧度,成为改变人生的残酷抛物线。家长声嘶力竭的哀求与考务人员机械的"这是规定",构成当代中国教育最尖锐的隐喻。 一、刚性规则的必要性 …...

MyBatis-Plus 常用条件构造方法

1.常用条件方法 方法 说明eq等于 ne不等于 <>gt大于 >ge大于等于 >lt小于 <le小于等于 <betweenBETWEEN 值1 AND 值2notBetweenNOT BETWEEN 值1 AND 值2likeLIKE %值%notLikeNOT LIKE %值%likeLeftLIKE %值likeRightLIKE 值%isNull字段 IS NULLisNotNull字段…...

结合PDE反应扩散方程与物理信息神经网络(PINN)进行稀疏数据预测的技术方案

以下是一个结合PDE反应扩散方程与物理信息神经网络(PINN)进行稀疏数据预测的技术方案,包含完整数学推导、PyTorch/TensorFlow双框架实现代码及对比实验分析。 基于PINN的反应扩散方程稀疏数据预测与大规模数据泛化能力研究 1. 问题定义与数学模型 1.1 反应扩散方程 考虑标…...