当前位置: 首页 > news >正文

基于图像处理的滑块验证码匹配技术

滑块验证码是一种常见的验证码形式,通过拖动滑块与背景图像中的缺口进行匹配,验证用户是否为真人。本文将详细介绍基于图像处理的滑块验证码匹配技术,并提供优化代码以提高滑块位置偏移量的准确度,尤其是在背景图滑块阴影较浅的情况下。

一、背景知识

1.1 图像处理概述

图像处理是指对图像进行分析和操作,以达到增强图像、提取特征、识别模式等目的。常用的图像处理技术包括高斯模糊、Canny 边缘检测、轮廓提取等。

1.2 滑块验证码的原理

滑块验证码通过用户拖动滑块,使滑块图像与背景图像中的缺口对齐,从而验证用户的操作。实现滑块验证码匹配的关键在于精确检测背景图像中缺口的位置。

二、技术实现

2.1 代码实现

import base64
import os
from datetime import datetime
from typing import Union, Optionalimport cv2
import numpy as npclass SliderCaptchaMatch:def __init__(self,gaussian_blur_kernel_size=(5, 5),gaussian_blur_sigma_x=0,canny_threshold1=200,canny_threshold2=450,save_images=False,output_path=""):"""初始化SlideMatch类:param gaussian_blur_kernel_size: 高斯模糊核大小,默认(5, 5):param gaussian_blur_sigma_x: 高斯模糊SigmaX,默认0:param canny_threshold1: Canny边缘检测阈值1,默认200:param canny_threshold2: Canny边缘检测阈值2,默认450:param save_images: 是否保存过程图片,默认False:param output_path: 生成图片保存路径,默认当前目录"""self.GAUSSIAN_BLUR_KERNEL_SIZE = gaussian_blur_kernel_sizeself.GAUSSIAN_BLUR_SIGMA_X = gaussian_blur_sigma_xself.CANNY_THRESHOLD1 = canny_threshold1self.CANNY_THRESHOLD2 = canny_threshold2self.save_images = save_imagesself.output_path = output_pathdef _remove_alpha_channel(self, image):"""移除图像的alpha通道:param image: 输入图像:return: 移除alpha通道后的图像"""if image.shape[2] == 4:  # 如果图像有alpha通道alpha_channel = image[:, :, 3]rgb_channels = image[:, :, :3]# 创建一个白色背景white_background = np.ones_like(rgb_channels, dtype=np.uint8) * 255# 使用alpha混合图像与白色背景alpha_factor = alpha_channel[:, :, np.newaxis] / 255.0image_no_alpha = rgb_channels * alpha_factor + white_background * (1 - alpha_factor)return image_no_alpha.astype(np.uint8)else:return imagedef _get_gaussian_blur_image(self, image):"""对图像进行高斯模糊处理:param image: 输入图像:return: 高斯模糊处理后的图像"""return cv2.GaussianBlur(image, self.GAUSSIAN_BLUR_KERNEL_SIZE, self.GAUSSIAN_BLUR_SIGMA_X)def _get_canny_image(self, image):"""对图像进行Canny边缘检测:param image: 输入图像:return: Canny边缘检测后的图像"""return cv2.Canny(image, self.CANNY_THRESHOLD1, self.CANNY_THRESHOLD2)def _get_contours(self, image):"""获取图像的轮廓:param image: 输入图像:return: 轮廓列表"""contours, _ = cv2.findContours(image, cv2.RETR_CCOMP, cv2.CHAIN_APPROX_SIMPLE)return contoursdef _get_contour_area_threshold(self, image_width, image_height):"""计算轮廓面积阈值:param image_width: 图像宽度:param image_height: 图像高度:return: 最小和最大轮廓面积阈值"""contour_area_min = (image_width * 0.15) * (image_height * 0.25) * 0.8contour_area_max = (image_width * 0.15) * (image_height * 0.25) * 1.2return contour_area_min, contour_area_maxdef _get_arc_length_threshold(self, image_width, image_height):"""计算轮廓弧长阈值:param image_width: 图像宽度:param image_height: 图像高度:return: 最小和最大弧长阈值"""arc_length_min = ((image_width * 0.15) + (image_height * 0.25)) * 2 * 0.8arc_length_max = ((image_width * 0.15) + (image_height * 0.25)) * 2 * 1.2return arc_length_min, arc_length_maxdef _get_offset_threshold(self, image_width):"""计算偏移量阈值:param image_width: 图像宽度:return: 最小和最大偏移量阈值"""offset_min = 0.2 * image_widthoffset_max = 0.85 * image_widthreturn offset_min, offset_maxdef _is_image_file(self, file_path: str) -> bool:"""检查字符串是否是有效的图像文件路径"""valid_extensions = ('.jpg', '.jpeg', '.png', '.bmp', '.gif', '.tiff')return os.path.isfile(file_path) and file_path.lower().endswith(valid_extensions)def _is_base64(self, s: str) -> bool:"""检查字符串是否是有效的 base64 编码"""try:if isinstance(s, str):# Strip out data URI scheme if presentif "data:" in s and ";" in s:s = s.split(",")[1]base64.b64decode(s)return Truereturn Falseexcept Exception:return Falsedef _read_image(self, image_source: Union[str, bytes], imread_flag: Optional[int] = None) -> np.ndarray:"""读取图像:param image_source: 图像路径或base64编码:param imread_flag: cv2.imread 和 cv2.imdecode 的标志参数 (默认: None):return: 读取的图像"""if isinstance(image_source, str):if self._is_image_file(image_source):  # 如果是文件路径if imread_flag is not None:return cv2.imread(image_source, imread_flag)else:return cv2.imread(image_source)elif self._is_base64(image_source):  # 如果是 base64 编码# 剥离数据URI方案(如果存在)if "data:" in image_source and ";" in image_source:image_source = image_source.split(",")[1]img_data = base64.b64decode(image_source)img_array = np.frombuffer(img_data, np.uint8)if imread_flag is not None:image = cv2.imdecode(img_array, imread_flag)else:image = cv2.imdecode(img_array, cv2.IMREAD_UNCHANGED)if image is None:raise ValueError("Failed to decode base64 image")return imageelse:raise ValueError("The provided string is neither a valid file path nor a valid base64 string")else:raise ValueError("image_source must be a file path or base64 encoded string")def get_slider_offset(self, background_source: Union[str, bytes], slider_source: Union[str, bytes],out_file_name: str = None) -> int:"""获取滑块的偏移量:param background_source: 背景图像路径或base64编码:param slider_source: 滑块图像路径或base64编码:param out_file_name: 输出图片的文件名: 默认为当前时间戳:return: 滑块的偏移量"""background_image = self._read_image(background_source)slider_image = self._read_image(slider_source, cv2.IMREAD_UNCHANGED)out_file_name = out_file_name if out_file_name else datetime.now().strftime('%Y%m%d%H%M%S.%f')[:-3]if background_image is None:raise ValueError("Failed to read background image")if slider_image is None:raise ValueError("Failed to read slider image")slider_image_no_alpha = self._remove_alpha_channel(slider_image)image_height, image_width, _ = background_image.shapeimage_gaussian_blur = self._get_gaussian_blur_image(background_image)image_canny = self._get_canny_image(image_gaussian_blur)contours = self._get_contours(image_canny)if self.save_images:# 创建输出目录if not os.path.exists(self.output_path):os.makedirs(self.output_path)cv2.imwrite(os.path.join(self.output_path, f'{out_file_name}_image_canny.png'), image_canny)cv2.imwrite(os.path.join(self.output_path, f'{out_file_name}_image_gaussian_blur.png'), image_gaussian_blur)contour_area_min, contour_area_max = self._get_contour_area_threshold(image_width, image_height)arc_length_min, arc_length_max = self._get_arc_length_threshold(image_width, image_height)offset_min, offset_max = self._get_offset_threshold(image_width)offset = Nonefor contour in contours:x, y, w, h = cv2.boundingRect(contour)if contour_area_min < cv2.contourArea(contour) < contour_area_max and \arc_length_min < cv2.arcLength(contour, True) < arc_length_max and \offset_min < x < offset_max:cv2.rectangle(background_image, (x, y), (x + w, y + h), (0, 0, 255), 2)offset = x# 匹配滑块模板在背景中的位置result = cv2.matchTemplate(background_image, slider_image_no_alpha, cv2.TM_CCOEFF_NORMED)_, _, _, max_loc = cv2.minMaxLoc(result)slider_x, slider_y = max_locoffset = slider_xcv2.rectangle(background_image, (slider_x, slider_y),(slider_x + slider_image_no_alpha.shape[1], slider_y + slider_image_no_alpha.shape[0]),(255, 0, 0), 2)if self.save_images:cv2.imwrite(os.path.join(self.output_path, f'{out_file_name}_image_label.png'), background_image)return offset

2.2 代码说明

  • 图像预处理:通过高斯模糊和Canny边缘检测增强图像的对比度和亮度,提高滑块识别率。
  • 多图像融合:通过多次处理图像并融合结果,以减小噪声对检测结果的影响。
  • 动态调整阈值:根据图像的直方图动态调整Canny边缘检测的阈值,提高对不同图像的适应性。
  • 轮廓检测:通过 _get_contours 函数获取图像的轮廓,并根据轮廓面积和弧长进行筛选。
  • 滑块匹配:通过模板匹配方法 cv2.matchTemplate 匹配滑块在背景图中的位置。

2.3 优化策略

  • 对比度和亮度增强:通过提高图像的对比度和亮度,使得滑块和背景的区别更加明显,增强滑块匹配的准确度。
  • 多图像融合:融合多张处理后的图像,减小单张图像中的噪声对结果的影响。
  • 动态调整参数:根据图像内容动态调整Canny边缘检测的阈值,使得算法对不同类型的图像都有较好的适应性。

2.4 安装依赖

要运行上述代码,需要安装以下 Python 库:

pip install numpy opencv-python slider_captcha_match

2.5 使用方法

在安装完所需库后,您可以按照以下步骤使用滑块验证码匹配功能:

  1. 初始化SliderCaptchaMatch类:配置高斯模糊、Canny边缘检测等参数。
  2. 读取背景图像和滑块图像:可以是文件路径或base64编码。
  3. 获取滑块偏移量:调用get_slider_offset函数,返回滑块的准确偏移量。
from slider_captcha_match import SliderCaptchaMatchfrom datetime import datetimeimport cv2# 初始化 SliderCaptchaMatch 类slider_captcha_match = SliderCaptchaMatch(save_images=True,output_path="output")# 读取背景图像和滑块图像background_source = "path_to_background_image.jpg"slider_source = "path_to_slider_image.png"# 获取滑块偏移量offset = slider_captcha_match.get_slider_offset(background_source, slider_source)print(f"滑块偏移量: {offset}")# 输出结果保存路径out_file_name = datetime.now().strftime('%Y%m%d%H%M%S.%f')[:-3]print(f"结果图像保存路径: output/{out_file_name}_image_label.png")

三、测试与验证

为了验证优化后的滑块验证码匹配技术,进行多次测试,比较不同情况下的滑块偏移量检测结果,并记录背景图、滑块图、中间预处理图和代码标注的滑块位置的图,以及缺口坐标位置偏移量计算。

Response for row 1: offset(手动标注)=155;缺口坐标(代码计算)=155.0

 

Response for row 2: offset(手动标注)=119;缺口坐标(代码计算)=118.5


Response for row 2: offset(手动标注)=223;缺口坐标(代码计算)=224.0

四、总结

本文介绍了基于图像处理的滑块验证码匹配技术,并通过多种优化策略提高了滑块位置偏移量的检测准确度。通过对图像进行预处理、融合多张图像、动态调整阈值等方法,可以有效提高滑块验证码在不同背景下的识别率。希望这篇文章能够对从事图像处理和验证码研究的读者有所帮助。

参考资料

  1. OpenCV 官方文档
  2. NumPy 官方文档
  3. 本Github项目源码地址

相关文章:

基于图像处理的滑块验证码匹配技术

滑块验证码是一种常见的验证码形式&#xff0c;通过拖动滑块与背景图像中的缺口进行匹配&#xff0c;验证用户是否为真人。本文将详细介绍基于图像处理的滑块验证码匹配技术&#xff0c;并提供优化代码以提高滑块位置偏移量的准确度&#xff0c;尤其是在背景图滑块阴影较浅的情…...

【JavaEE精炼宝库】文件操作(1)——基本知识 | 操作文件——打开实用性编程的大门

目录 一、文件的基本知识1.1 文件的基本概念&#xff1a;1.2 树型结构组织和目录&#xff1a;1.3 文件路径&#xff08;Path&#xff09;&#xff1a;1.4 二进制文件 VS 文本文件&#xff1a;1.5 其它&#xff1a; 二、Java 操作文件2.1 方法说明&#xff1a;2.2 使用演示&…...

常用排序算法_06_归并排序

1、基本思想 归并排序采用分治法 (Divide and Conquer) 的一个非常典型的应。归并排序的思想就是先递归分解数组&#xff0c;再合并数组。归并排序是一种稳定的排序方法。 将数组分解最小之后&#xff08;数组中只有一个元素&#xff0c;数组有序&#xff09;&#xff1b;然后…...

14-8 小型语言模型的兴起

过去几年&#xff0c;我们看到人工智能能力呈爆炸式增长&#xff0c;其中很大一部分是由大型语言模型 (LLM) 的进步推动的。GPT-3 等模型包含 1750 亿个参数&#xff0c;已经展示了生成类似人类的文本、回答问题、总结文档等能力。然而&#xff0c;虽然 LLM 的能力令人印象深刻…...

【Linux】:进程创建与终止

朋友们、伙计们&#xff0c;我们又见面了&#xff0c;本期来给大家解读一下有关Linux程序地址空间的相关知识点&#xff0c;如果看完之后对你有一定的启发&#xff0c;那么请留下你的三连&#xff0c;祝大家心想事成&#xff01; C 语 言 专 栏&#xff1a;C语言&#xff1a;从…...

横截面交易策略:概念与示例

数量技术宅团队在CSDN学院推出了量化投资系列课程 欢迎有兴趣系统学习量化投资的同学&#xff0c;点击下方链接报名&#xff1a; 量化投资速成营&#xff08;入门课程&#xff09; Python股票量化投资 Python期货量化投资 Python数字货币量化投资 C语言CTP期货交易系统开…...

4.2 投影

一、投影和投影矩阵 我们以下面两个问题开始&#xff0c;问题一是为了展示投影是很容易视觉化的&#xff0c;问题二是关于 “投影矩阵”&#xff08;projection matrices&#xff09;—— 对称矩阵且 P 2 P P^2P P2P。 b \boldsymbol b b 的投影是 P b P\boldsymbol b Pb。…...

23种设计模式之装饰者模式

深入理解装饰者模式 一、装饰者模式简介1.1 定义1.2 模式类型1.3 主要作用1.4 优点1.5 缺点 二、模式动机三、模式结构四、 装饰者模式的实现4.1 组件接口4.2 具体组件4.3 装饰者抽象类4.4 具体装饰者4.5 使用装饰者模式4.6 输出结果&#xff1a; 五、 应用场景5.1 图形用户界面…...

数据结构--单链表实现

欢迎光顾我的homepage 前言 链表和顺序表都是线性表的一种&#xff0c;但是顺序表在物理结构和逻辑结构上都是连续的&#xff0c;但链表在逻辑结构上是连续的&#xff0c;而在物理结构上不一定连续&#xff1b;来看以下图片来认识链表与顺序表的差别 这里以动态顺序表…...

2024攻防演练:亚信安全推出MSS/SaaS短期定制服务

随着2024年攻防演练周期延长的消息不断传出&#xff0c;各参与方将面临前所未有的挑战。面对强大的攻击队伍和日益严格的监管压力&#xff0c;防守单位必须提前进行全面而周密的准备和部署。为应对这一形势&#xff0c;亚信安全特别推出了为期三个月的MSS/SaaS短期订阅方案。该…...

基于java+springboot+vue实现的在线课程管理系统(文末源码+Lw)236

摘要 本文首先介绍了在线课程管理系统的现状及开发背景&#xff0c;然后论述了系统的设计目标、系统需求、总体设计方案以及系统的详细设计和实现&#xff0c;最后对在线课程管理系统进行了系统检测并提出了还需要改进的问题。本系统能够实现教师管理&#xff0c;科目管理&…...

每日一更 EFK日志分析系统

需要docker和docker-compose环境 下面时docker-compose.yaml文件 [rootnode1 docker-EFK]# cat docker-compose.yaml version: 3.3services:elasticsearch:image: "docker.elastic.co/elasticsearch/elasticsearch:7.17.5"container_name: elasticsearchrestart: …...

python类继承和类变量

Python一些类继承和实例变量的使用 定义基类 class APIException:code 500msg "Sorry, error"error_code 999def __init__(self, msgNone):print("APIException init ...")def error_400(self):pass复用基类的属性值 class ClientTypeError(APIExcept…...

js 随机生成整数

随机生成一个唯一的整数 id export const randomId () > { return Date.now() Math.floor(Math.random() * 10000) } 生成随机ID的方法 // 随机生成0 - 9999 export const randomId ()> { return Math.floor(Math.random() * 10000).toString() } // 随机生成0-999之…...

深入Django(七)

Django的数据库迁移系统 引言 在前六天的教程中&#xff0c;我们介绍了Django的基本概念、模型、视图、模板、URL路由和表单系统。今天&#xff0c;我们将讨论Django的数据库迁移系统&#xff0c;它是管理和跟踪数据库变化的关键组件。 Django数据库迁移概述 Django的数据库…...

【区分vue2和vue3下的element UI Steps 步骤条组件,分别详细介绍属性,事件,方法如何使用,并举例】

在 Vue 2 和 Vue 3 中&#xff0c;Element UI&#xff08;针对 Vue 2&#xff09;和 Element Plus&#xff08;针对 Vue 3&#xff09;提供了 Steps 步骤条组件&#xff0c;用于展示当前操作的进度步骤。虽然这两个库都提供了步骤条组件&#xff0c;但它们在属性、事件和方法的…...

uni-app x 跨平台开发框架

目录 uni-app x 是什么 和Flutter对比 uts语言 uvue渲染引擎 组合式API的写法 选项式API写法 页面生命周期 API pages.json全局配置文件 总结 uni-app x 是什么 uni-app x&#xff0c;是下一代 uni-app&#xff0c;是一个跨平台应用开发引擎。 uni-app x 是一个庞…...

YOLOv8模型调参---数据增强

目录 1.数据预处理 2.数据增强 2.1 数据增强的作用 2.2 数据增强方式与适用场景 2.2.1离线增强&#xff08;Offline Augmentation&#xff09; 2.2.2 在线增强&#xff08;Online Augmentation&#xff09; 3. 数据增强的具体方法 4. YOLOv8的数据增强 4.1 YOLOv8默认…...

【Nginx】docker运行Nginx及配置

Nginx镜像的获取 直接从Docker Hub拉取Nginx镜像通过Dockerfile构建Nginx镜像后拉取 二者区别 主要区别在于定制化程度和构建过程的控制&#xff1a; 直接拉取Nginx镜像&#xff1a; 简便性&#xff1a;直接使用docker pull nginx命令可以快速拉取官方的Nginx镜像。这个过程…...

tensorflow和numpy的版本

查看cuda版本 dpkg -l | grep cuda i libcudart11.0:amd64 11.5.117~11.5.1-1ubuntu1 amd64 NVIDIA CUDA Runtime Library ii nvidia-cuda-dev:amd64 11.5.1-1ubuntu1 …...

二维Gamma分布的激光点云去噪

目录 1、Gamma 分布简介2、实现步骤 1、Gamma 分布简介 Gamma 分布在合成孔径雷达( Synthetic Aperture &#xff32;adar&#xff0c;SA&#xff32;) 图像分割中具有广泛应用&#xff0c;较好的解决了SA&#xff32; 图像中相干斑噪声对图像分割的影响。采用二维Gamma 分布对…...

鸿蒙笔记导航栏,路由,还有axios

1.导航组件 导航栏位置可以调整&#xff0c;导航栏位置 Entry Component struct t1 {build() {Tabs(){TabContent() {Text(qwer)}.tabBar("首页")TabContent() {Text(发现内容)}.tabBar(发现)TabContent() {Text(我的内容)}.tabBar("我的")}// 做平板适配…...

Spring 框架中都用到了哪些设计模式:单例模式、策略模式、代理模式

Spring 框架是一个功能强大的企业级应用开发框架,它使用了多种设计模式来提高代码的可维护性、可扩展性和可重用性。以下是 Spring 框架中常见的几个设计模式,并简要说明它们的应用场景: 1. 单例模式(Singleton Pattern) 定义:确保一个类只有一个实例,并提供全局访问点…...

阶段总结——基于深度学习的三叶青图像识别

阶段总结——基于深度学习的三叶青图像识别 文章目录 一、计算机视觉图像分类系统设计二、训练模型2.1. 构建数据集2.2. 网络模型选择2.3. 图像数据增强与调参2.4. 部署模型到web端2.5. 开发图像识别小程序 三、实验结果3.1. 模型训练3.2. 模型部署 四、讨论五、参考文献&#…...

深度解析Java世界中的对象镜像:浅拷贝与深拷贝的奥秘与应用

在Java编程的浩瀚宇宙中&#xff0c;对象拷贝是一项既基础又至关重要的技术。它直接关系到程序的性能、资源管理及数据安全性。然而&#xff0c;提及对象拷贝&#xff0c;不得不深入探讨其两大核心类型&#xff1a;浅拷贝&#xff08;Shallow Copy&#xff09;与深拷贝&#xf…...

Python | Leetcode Python题解之第218题天际线问题

题目&#xff1a; 题解&#xff1a; class Solution:def getSkyline(self, buildings: List[List[int]]) -> List[List[int]]:buildings.sort(keylambda bu:(bu[0],-bu[2],bu[1]))buildings.append([inf,inf,inf])heap [[-inf,-inf,-inf]]ans []for l,r,h in buildings:i…...

使用Spring Boot构建RESTful API

使用Spring Boot构建RESTful API 大家好&#xff0c;我是免费搭建查券返利机器人省钱赚佣金就用微赚淘客系统3.0的小编&#xff0c;也是冬天不穿秋裤&#xff0c;天冷也要风度的程序猿&#xff01;今天&#xff0c;我们将深入探讨如何使用Spring Boot构建RESTful API。通过这篇…...

Spark快速大数据分析PDF下载读书分享推荐

《Spark 快速大数据分析》是一本为 Spark 初学者准备的书&#xff0c;它没有过多深入实现细节&#xff0c;而是更多关注上层用户的具体用法。不过&#xff0c;本书绝不仅仅限于 Spark 的用法&#xff0c;它对 Spark 的核心概念和基本原理也有较为全面的介绍&#xff0c;让读者能…...

Centos7离线安装mysql-5.7.44bundle包

在 CentOS 7 上安装 mysql-5.7.44-1.el7.x86_64.rpm-bundle.tar&#xff08;这里假设这是一个包含多个 RPM 包的 tar 归档文件&#xff09;的步骤通常涉及解压归档文件、安装 RPM 包以及配置 MySQL 服务。以下是一个详细的步骤指南&#xff1a; 1. 下载和解压 RPM 包 首先&am…...

ROS melodic版本卸载---Ubuntu18.04

sudo apt-get remove ros-melodic-desktop-fullsudo apt-get remove gazebo* 删除依赖关系 sudo apt autoremove删除与ros关联的所有文件 sudo apt-get purge ros-* sudo rm -rf /etc/ros找到.bashrc文件删除含ros的环境配置语句 全部删除完毕&#xff0c;可以去计算机下的…...

Java面试之Java多线程常见面试题

1、什么是线程&#xff1f; 定义&#xff1a;线程是程序中的执行路径&#xff0c;是操作系统进行调度的基本单位。它允许程序并发执行多个任务&#xff0c;提高程序的响应速度和资源利用率。 2、为什么需要线程&#xff1f; 1、提高并发性&#xff1a;线程允许程序同时执行多…...

Java [ 基础 ] Java面向对象编程 (OOP) ✨

目录 ✨探索Java基础 Java面向对象编程 (OOP) ✨ 引言 1. 类和对象 2. 封装 3. 继承 4. 多态 5. 抽象 结论 ✨探索Java基础 Java面向对象编程 (OOP) ✨ 引言 Java是一门以面向对象编程&#xff08;OOP&#xff09;为基础的编程语言。OOP的核心概念包括类和对象、封装…...

敏捷开发笔记(第9章节)--开放-封闭原则(OCP)

目录 1&#xff1a;PDF上传链接 9.1 开放-封闭原则&#xff08;OCP&#xff09; 9.2 描述 9.3 关键是抽象 9.3.1 shape应用程序 9.3.2 违反OCP 糟糕的设计 9.3.3 遵循OCP 9.3.4 是的&#xff0c;我说谎了 9.3.5 预测变化和“贴切的”结构 9.3.6 放置吊钩 1.只受一次…...

苹果电脑清理app垃圾高效清理,无需专业知识

在我们的日常使用中&#xff0c;苹果电脑以其优雅的设计和强大的功能赢得了广泛的喜爱。然而&#xff0c;即便是最高效的设备&#xff0c;也无法免俗地积累各种不必要的文件和垃圾&#xff0c;特别是app垃圾。所以&#xff0c;苹果电脑清理app垃圾高效清理&#xff0c;对于大多…...

【算法】(C语言):快速排序(递归)、归并排序(递归)、希尔排序

快速排序&#xff08;递归&#xff09; 左指针指向第一个数据&#xff0c;右指针指向最后一个数据。取第一个数据作为中间值。右指针指向的数据 循环与中间值比对&#xff0c;若大于中间值&#xff0c;右指针往左移动一位&#xff0c;若小于中间值&#xff0c;右指针停住。右…...

模型驱动开发(Model-Driven Development,MDD):提高软件开发效率与一致性的利器

目录 前言1. 模型驱动开发的原理1.1 什么是模型驱动开发1.2 MDD的核心思想 2. 模型驱动开发的优势2.1 提高开发效率2.2 确保代码一致性2.3 促进沟通和协作2.4 方便维护和扩展 3. 实现模型驱动开发的方法3.1 选择合适的建模工具3.1.1 UML3.1.2 BPMN3.1.3 SysML 3.2 建模方法3.2.…...

记录discuz修改用户的主题出售价格

大家好&#xff0c;我是网创有方的站长&#xff0c;今天遇到了需要修改discuz的主题出售价格。特此记录下 方法很简单&#xff1a; 进入用于组-》选择论坛-》批量修改...

WGAN(Wassertein GAN)

WGAN E x ∼ P g [ log ⁡ ( 1 − D ( x ) ) ] E x ∼ P g [ − log ⁡ D ( x ) ] \begin{aligned} & \mathbb{E}_{x \sim P_g}[\log (1-D(x))] \\ & \mathbb{E}_{x \sim P_g}[-\log D(x)] \end{aligned} ​Ex∼Pg​​[log(1−D(x))]Ex∼Pg​​[−logD(x)]​ 原始 GAN …...

Maven基本使用

1. Maven前瞻 Maven官网&#xff1a;https://maven.apache.org/ Maven镜像&#xff1a;https://mvnrepository.com 1.1、Maven是什么 Maven是一个功能强大的项目管理和构建工具&#xff0c;可以帮助开发人员简化Java项目的构建过程。 在Maven中&#xff0c;使用一个名为 pom.…...

在Linux系统中配置GitHub的SSH公钥

在Linux系统中配置GitHub的SSH公钥&#xff0c;可以让您无需频繁输入密码即可与GitHub仓库进行交互&#xff0c;提高工作效率。以下是配置步骤: 第一步&#xff1a; 检查SSH密钥是否存在 首先&#xff0c;检查您的用户目录下的.ssh文件夹中是否已有SSH密钥。打开终端&#xff0…...

小酌消烦暑|人间正清欢

小暑是二十四节气之第十一个节气。暑&#xff0c;是炎热的意思&#xff0c;小暑为小热&#xff0c;还不十分热。小暑虽不是一年中最炎热的时节&#xff0c;但紧接着就是一年中最热的节气大暑&#xff0c;民间有"小暑大暑&#xff0c;上蒸下煮"之说。中国多地自小暑起…...

C语言结构体的相关知识

前言 从0开始记录我的学习历程&#xff0c;我会尽我所能&#xff0c;写出最最大白话的文章&#xff0c;希望能够帮到你&#xff0c;谢谢。 1.结构体类型的概念及定义 1.1、概念&#xff1a; 结构体是一种构造类型的数据结构&#xff0c; 是一种或多种基本类型或构造类型的数…...

RabbitMQ入门教程(精细版二带图)

目录 六 RabbitMQ工作模式 6.1Hello World简单模式 6.1.1 什么是简单模式 6.1.2 RabbitMQ管理界面操作 6.1.3 生产者代码 6.1.4 消费者代码 6.2 Work queues工作队列模式 6.2.1 什么是工作队列模式 6.2.2 RabbitMQ管理界面操作 6.2.3 生产者代码 6.2.4 消费者代码 …...

IO、零拷贝、多路复用、connection、池化

目录 一、IO 模型 二、什么是网络IO 三、什么是零拷贝 四、多路复用 五、java程序、mysql JDBC connection关系 六、connection怎么操作事务 七 、java里面的池化技术 八、线程池7个核心参数 九、线程的状态 一、IO 模型 BIO &#xff1a;同步阻塞io&#xff0c;单线程 内存上下…...

Lua 错误处理

Lua 错误处理 Lua是一种轻量级的编程语言&#xff0c;广泛用于游戏开发、脚本编写和其他应用程序中。在编程过程中&#xff0c;错误处理是一个重要的方面&#xff0c;它可以帮助开发者创建更健壮和可靠的程序。本文将详细介绍Lua中的错误处理机制。 错误类型 在Lua中&#x…...

二刷力扣——单调栈

739. 每日温度 单调栈应该从栈底到栈顶 是递减的。 找下一个更大的 &#xff0c;用递减单调栈&#xff0c;就可以确定在栈里面的每个比当前元素i小的元素&#xff0c;下一个更大的就是这个i&#xff0c;然后弹出并记录&#xff1b;然后当前元素i入栈&#xff0c;仍然满足递减…...

elementPlus-vue3-ts表格单选和双选实现方式

记录在vue3、ts、element-plus环境下表格单选和多选的实现方式 单选 html部分 <el-table...reftaskTableRefselect"selectClick"... ><el-table-column type"selection" width"50" />... </el-table>ts部分 const taskTabl…...

Linux系统中卸载GitLab

在Linux系统中卸载GitLab&#xff0c;主要可以通过包管理器&#xff08;如apt、yum、rpm等&#xff09;来实现&#xff0c;但具体步骤可能会因GitLab的安装方式&#xff08;如使用包管理器安装、从源代码安装、使用Docker等&#xff09;和Linux发行版的不同而有所差异。以下是一…...

基于STM32F407ZG的FreeRTOS移植

1.从FreeRTOS官网中下载源码 2、简单分析FreeRTOS源码目录结构 2.1、简单分析FreeRTOS源码根目录 &#xff08;1&#xff09;Demo&#xff1a;是官方为一些单片机移植FreeRTOS的例程 &#xff08;2&#xff09;License&#xff1a;许可信息 &#xff08;3&#xff09;Sourc…...

【IT领域新生必看】Java编程中的神奇对比:深入理解`equals`与`==`的区别

文章目录 引言什么是操作符&#xff1f;基本数据类型的比较示例&#xff1a; 引用类型的比较示例&#xff1a; 什么是equals方法&#xff1f;equals方法的默认实现示例&#xff1a; 重写equals方法示例&#xff1a; equals与的区别比较内容不同示例&#xff1a; 使用场景不同示…...